1.Design, synthesis and anti-Alzheimer's disease activity evaluation of cinnamyl triazole compounds
Wen-ju LEI ; Zhong-di CAI ; Lin-jie TAN ; Mi-min LIU ; Li ZENG ; Ting SUN ; Hong YI ; Rui LIU ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2025;60(1):150-163
19 cinnamamide/ester-triazole compounds were designed, synthesized and evaluated for their anti-Alzheimer's disease (AD) activity. Among them, compound
2.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
3.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
4.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
5.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
6.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
7.Effects of Kidney-Tonifying and Blood-Activating Acupuncture on Mitochondrial Membrane Potential and SIRT1/PGC-1α Axis in Hippocampal Tissue of SAMP8 Mice
Dan REN ; Ting ZHANG ; Jiangxi XU ; Hong ZHU ; Ruomeng LI
Journal of Traditional Chinese Medicine 2025;66(13):1378-1385
ObjectiveTo explore the potential mechanisms of kidney-tonifying and blood-activating acupuncture for Alzheimer's disease. MethodsMale SAMP8 mice were randomly divided into a model group, acupuncture group, non-acupoint group, and donepezi group, with 10 mice in each group, and 10 SAMR1 mice as normal group. The acupuncture group received acupuncture at Baihui (GV 20), Xuehai (SP 10), Shenshu (BL 23), and Geshu (BL 17). Xuehai (SP 10), Shenshu (BL 23), and Geshu (BL 17) were stimulated on the left side first and then on the right side alternately, once a day. The non-acupoint group received acupuncture at fixed bilateral non-meridian, non-acupoint points under the ribs, once a day. The model and normal groups underwent equivalent handling and restraint stress without acupuncture. The donepezi group received 1 mg/kg donepezil via gastric gavage daily. All groups were treated for 4 weeks. After treatment, Morris water maze tests (to record orientation sailing latency, number of traverses through the platform quadrant) and open field (to record distance travelled) were used to evaluate learning and memory abilities; hippocampal neuronal damage was analyzed via HE and Nissl staining; mitochondrial membrane potential and reactive oxygen species (ROS) were measured using assay kits; Western blot and qRT-PCR were performed to detect silencing information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and mRNA expression levels. ResultsCompared with the normal group, mice in the model group and non-acupoint group showed elevated orientation sailing latency and relative multiplicity of ROS in hippocampal tissues, and reduced number of traverses through the platform quadrant, distance of movement in the open-field experiment, number of Nissl-staining-positive cells in the hippocampal tissues, mitochondrial membrane potential, and protein levels and mRNA expression of SIRT1, PGC-1α (P<0.01); HE staining showed that the hippocampal tissues of the mice was loosely arranged, with reduced number of neurons and vacuolar degeneration; Nissl staining showed that pyramidal neurons in the hippocampal region were not neatly arranged, and the number of Nissl bodies in the cytoplasm was less and the staining was lighter. Compared with the model group, mice in the acupuncture group and donepezil group had lower orientation sailing latency and relative multiplicity of ROS in the hippocampal tissue, higher number of traverses through the platform quadrant, distance of movement in the open-field experiment, number of Nissl-stained positive cells in the hippocampal tissue, mitochondrial membrane potential, and protein levels and mRNA expression of SIRT1 and PGC-1α (P<0.01), and HE staining and Nissl staining showed significant improvement in hippocampal histopathological damage. Compared with the donepezil group, the orientation sailing latency shortened in the acupuncture group of mice (P<0.01). ConclusionKidney-tonifying and blood-activating acupuncture method can alleviate the SIRT1/PGC-1α signalling pathway in the hippocampal tissue and improve the mitochondrial function, thus alleviating the neuronal damage, which is one of the possible mechanisms for its treatment of Alzheimer's disease.
8.Expression changes and functional role of GPR110 in metabolic dysfunction-associated steatohepatitis
Chinese Journal of Clinical Medicine 2025;32(3):334-341
Objective To investigate expression changes and regulatory roles of adhesion G protein-coupled receptor F1 (ADGRF1/GPR110) in metabolic dysfunction-associated steatohepatitis (MASH)-related hepatic fibrosis. Methods Human MASH liver tissues were collected for GPR110 detection via real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Eight-week-old male C57BL/6 mice were randomly divided into four groups: control+AAV-GFP group, control+AAV-GPR110 group, MASH+AAV-GFP group, and MASH+AAV-GPR110 group. MASH was induced by high-fat with high-sucrose diet and low-dose CCl4 intraperitoneal injections, with AAV-GPR110/AAV-GFP delivered via tail vein. Liver tissues were harvested at designated intervals (4 w, 8 w, and 12 w). Western blotting measured GPR110 expression; hematoxylin-eosin and oil red O staining assessed histology and lipid content; F4/80 and α-smooth muscle actin (α-SMA) immunofluorescence staining evaluated inflammation and fibrosis; qRT-PCR quantified hepatic expression of lipid metabolism, inflammatory, and fibrotic genes. Results GPR110 expression was significantly reduced in livers of MASH patients compared with controls (P<0.05). MASH+AAV-GPR110 mice exhibited lower weight, liver index, and serum lipids compared with MASH+AAV-GFP (P<0.05). Lipid synthesis-related gene (SCD-1), lipid uptake-related gene (CD36), gluconeogenesis-related genes (PEPCK and G-6-Pase), and inflammation-related genes (TNF-α, NF-κB, and iNOS) in liver were downregulated in MASH+AAV-GPR110 (P<0.05). Hepatic F4/80+ and α-SMA+ areas decreased in MASH+AAV-GPR110 (P<0.05). Conclusion GPR110 overexpression ameliorates hepatic lipid accumulation, reduces inflammation, and delays fibrosis in MASH.
9. Effect of exogenous hydrogen sulfide on hypoxia/reoxygenation injury in glomerular mesangial cells and its mechanism
Zhen-Ting LIN ; Hua TIAN ; Hong-Zhu LI
Chinese Pharmacological Bulletin 2024;40(1):133-138
Aim To explore the effect of exogenous hydrogen sulfide ( H2 S ) on hypoxia/reoxygenation ( H/R) injury in glomerular mesangial cells and elucidate its relevant mechanism. Methods H/R induced mouse mesangial cell line ( SV40MES13 ) to establish cell damage model. Cell viability was detected by cell proliferation kit ( CCK8 ), the content of H
10. Network pharmacology-based study on mechanism of Zhi-Huang-Zhi-Tong powder in rheumatoid arthritis treatment
Xiao-Yun TIAN ; Ying-Jie YANG ; Wan-Ting ZHENG ; Ming-Qing HUANG ; Li-Hong NAN ; Jian-Yu CHEN ; Hai-Yu ZHAO
Chinese Pharmacological Bulletin 2024;40(2):381-389
Aim To discover the potential active compounds and possible mechanisms in rheumatoid arthritis (RA) treatment with Zhi-Huang-Zhi-Tong powder (ZHZTP) by using network pharmacology and in vitro study. Methods The active ingredient targets and disease targets of Zhihuang Zhitong Powder were searched and screened by database; they intersected to get a common target; and the "drug-component-target" relationship network diagram was constructed for GO and KEGG enrichment analysis of the overlapping genes; then the core components were docked with the core targets. Finally, based on the inflammation model of HUVECs in vitro, the efficacy and mechanism of Zhihuang Zhitong powder were verified by MTT method, plate scratch test and Western blot. Results Active compounds involved in RA treatment were screened in the present study, and the top two were ursolic acid and emodin, all playing crucial roles in RA treatment with ZHZTP. Additionally, the key target was AKTA, TNF and IL-6. GO and KEGG enrichment analysis revealed that ZHZTP regulated BP, MF and CC, and also focused on regulating AKTA, TNF and IL-6 signaling pathway. Molecular docking showed that interactions between key active compounds and key targets were stable. In vitro ZHZTP significantly inhibited cell viability and migration of TNF-a-stimulated HUVECs, and the involved mechanism may be associated with PI3K/AKT/m-TOR signaling. Conclusions The present study reveals that the potential active compounds of ZHZTP are ursolic acid and emodin, and moreover, the involved mechanisms of ZHZTP for RA treatment are associated with PI3 K/AKT/m-TOR signaling.

Result Analysis
Print
Save
E-mail