1.Exploration of Party-building leadership in promoting hospital culture construction in the new era: taking Xi’an No. 9 Hospital as an example
Louyan MA ; Yi WANG ; Zhen ZHEN ; Mi PANG ; Ting HE ; Puyan WEN ; Juxian ZHENG
Chinese Medical Ethics 2025;38(3):398-402
Hospital culture is the sum of common values, codes of conduct, and working methods formed by internal employees within the hospital, and it is the spiritual pillar and core of cohesion of the hospital. Party-building leadership plays an important role in promoting hospital culture construction, including strengthening values guidance, enhancing team cohesion, facilitating management system innovation, and shaping social image and brand value. By analyzing the effectiveness of a series of Party-building activities carried out by Xi’an No. 9 Hospital in recent years, this paper explored the effect and significance of Party-building leadership in promoting hospital culture construction in the new era, as well as proposed guiding strategies for strengthening Party-building work in promoting hospital culture construction in the new era, so as to promote high-quality development of the hospital.
2.Effects of electroacupuncture on the expression of metabolic enzymes and autophagy genes in gastrocnemius muscle tissues of exercising rats
Rongfa ZHENG ; Weibin MO ; Peng HUANG ; Junji CHEN ; Ting LIANG ; Fangyu ZI ; Guofeng LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1127-1136
BACKGROUND:Acute exercise tends to cause skeletal muscle tissue damage and lipid metabolism disorders in vivo,but the mechanism by which acute exercise combined with electroacupuncture modulates metabolic and autophagic pathways in vivo is unclear. OBJECTIVE:To observe the changes in metabolic enzymes and autophagy levels in skeletal muscle of rats subjected to acute exercise by electroacupuncture at the acupoints of"Zusanli"and"Huantiao." METHODS:Fifty male Sprague-Dawley rats were randomly divided into three groups:quiet control group(n=10),model group(n=20),and reverse electroacupuncture group(n=20).The latter two groups were set up with two time points,i.e.immediate and 3 hours after exercise groups(n=10 per time point).The model group and the reverse electroacupuncture group underwent acute exercise training after adaptive treadmill training.The rats in the reverse electroacupuncture group underwent electroacupuncture treatment(parameters:electroacupuncture on both sides of the rats at the acupoints of"Zusanli"and"Huantiao,"continuous wave,frequency of 2 Hz,intensity of 2 mA,leaving the needle in the body for 30 minutes,once a day for 7 consecutive days)before treadmill training.Bilateral gastrocnemius muscle tissues were taken under anesthesia immediately after exercise and 3 hours after exercise,and hematoxylin-eosin staining was used to observe the histopathological changes of rat skeletal muscle.ELISA kit was used to detect the activities of hepatic lipase,fatty acid synthase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 in rat skeletal muscle tissues.Immunohistochemistry and western blot were used to detect the changes in the expression of autophagy genes. RESULTS AND CONCLUSION:After hematoxylin-eosin staining,the arrangement of gastrocnemius muscle fibers in the model group was disturbed,swollen and ruptured immediately after exercise and 3 hours after exercise.In the reverse electroacupuncture group,gastrocnemius muscle fibers were tightly arranged and the number of swollen and ruptured cells was greatly reduced immediately after exercise and 3 hours after exercise,and there was no significant difference when compared with the quiet control group.Compared with the quiet control group,the activities of hepatic lipase and fatty acid synthase were lower while the activities of lipoprotein lipase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 were higher in the model group and the reverse electroacupuncture group 3 hours after exercise(P<0.05 or P<0.01).Compared with the model group,the activities of lipoprotein lipase and carnitine palmitoyltransferase 1 were higher in the reverse electroacupuncture group immediately after exercise(P<0.05),while the activity of lipoprotein lipase was higher and the activity of hormone-sensitive lipase was lower in the reverse electroacupuncture group 3 hours after exercise(P<0.01).Immunohistochemical results showed that compared with the quiet control group,the expression of P62,autophagy-related gene 5 and autophagy-related gene 7 was higher in the model group immediately and 3 hours after exercise,as well as in the reverse electroacupuncture group immediately after exercise(P<0.05 or P<0.01);compared with the model group,the expression of P62 and autophagy-related gene 7 was lower in the reverse electroacupuncture group immediately and 3 hours after exercise(P<0.05).Western blot results showed that the protein expression of P62 and autophagy-related gene 7 in the reverse electroacupuncture group was lower than that in the model group immediately after exercise(P<0.05);the protein expression of Parkin in the model group was higher than that in the quiet control group immediately and 3 hours after exercise(P<0.05);and the protein expression of Parkin in the reverse electroacupuncture group was lower than that in the model group immediately and 3 hours after exercise(P<0.05).To conclude,acute exercise induces disorders,swelling and rupture of gastrocnemius muscle fibers in rats and electroacupuncture on both sides of the acupoints of"Zusanli"and"Huantiao"can improve the level of lipid metabolism and regulate autophagy cells in rat skeletal muscle,preventing the disorders of lipid metabolism and damage of gastrocnemius muscle tissues caused by acute exercise.The mechanism may be closely related to the regulation of autophagy-related factor P62,autophagy-related gene 5,autophagy-related gene 7,and Parkin protein expression to promote the occurrence of autophagy or regulate the autophagy pathway in rat skeletal muscle cells.
3.Effects of macrophage migration inhibitory factor on survival,proliferation,and differentiation of human embryonic stem cells
Ting HUANG ; Xiaohan ZHENG ; Yuanji ZHONG ; Yanzhao WEI ; Xufang WEI ; Xudong CAO ; Xiaoli FENG ; Zhenqiang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(7):1380-1387
BACKGROUND:Macrophage migration inhibitory factor(MIF)is a pleiotropic cytokine,which is secreted in different types of stem cells and can regulate the proliferation,differentiation and migration of various types of stem cells.Our previous research has confirmed that human embryonic stem cells secrete MIF and that its concentration in the culture medium is relatively stable.However,whether MIF is involved in the survival,proliferation and differentiation of human embryonic stem cells remains unclear. OBJECTIVE:To investigate the effects of MIF on survival,proliferation,and differentiation of human embryonic stem cells. METHODS:(1)Human embryonic stem cells H9 were cultured.The growth curve of cells was detected and plotted by CCK-8 assay.Enzyme-linked immunosorbent assay was used to determine the level of MIF in the medium.(2)To determine the effects of exogenous MIF on the survival and proliferation of human embryonic stem cells,different groups were established:the control group,which was cultured in stem cell medium without any modifications;the exogenous MIF group,which was treated with different concentrations(30,100,300 ng/mL)of MIF in the stem cell medium;the MIF inhibitor ISO-1 group,which was treated with different concentrations(2,7,21 μmol/L)of ISO-1 in the stem cell medium;and the MIF+ISO-1 group,which was treated with different concentrations of ISO-1 along with 100 ng/mL of MIF.Cell viability was assessed using the CCK-8 assay.(3)To further elucidate the effect of MIF gene on survival and proliferation of human embryonic stem cell,the MIF knockout H9 cell line was constructed by CRISPR-Cas 9 technology to observe the lineage establishment.(4)To determine the effect of high concentrations of MIF on human embryonic stem cell differentiation,100 ng/mL MIF and 100 ng/mL of CXCR4 neutralizing antibody were separately added to the normal stem cell culture medium.The expression levels of self-renewal factors(KLF4,c-MYC,NANOG,OCT4,and SOX2)and differentiation transcription factors(FOXA2,OTX2)were measured using real-time quantitative polymerase chain reaction,immunofluorescence staining,and western blot analysis. RESULTS AND CONCLUSION:(1)The logarithmic growth phase of H9 cells was between 3-6 days.Under normal growth conditions,human embryonic stem cells secreted MIF at a concentration of approximately 20 ng/mL,independent of cell quantity.(2)Compared to the control group,the addition of different concentrations of MIF had no effect on the proliferation of human embryonic stem cells(P>0.05).ISO-1 significantly inhibited the proliferation of human embryonic stem cells,with a stronger inhibition observed at higher concentrations of ISO-1(P<0.05).The addition of MIF in the presence of ISO-1 reduced the inhibitory effect of ISO-1(P<0.05).(3)Real-time quantitative polymerase chain reaction showed that knocking out 50%of the MIF gene resulted in a significant decrease in the growth vitality of human embryonic stem cells and failure to establish cell lines.(4)Adding 100 ng/mL exogenous MIF to the culture medium resulted in a decrease in the mRNA,protein,and fluorescence expression levels of the self-renewal transcription factor KLF4,while the mRNA,protein,and fluorescence expression levels of the differentiation factor FOXA2 increased.(5)When 100 ng/mL CXCR4 neutralizing antibody was added to the culture medium,the mRNA and protein expression levels of KLF4 increased,while the mRNA and protein expression levels of FOXA2 decreased,contrary to the expression trend observed in the MIF group.In conclusion,the endogenous secretion of MIF by human embryonic stem cells is essential for their survival.The addition of MIF to the culture medium does not promote the proliferation of human embryonic stem cells.However,it can lead to a decrease in the expression of the self-renewal factor KLF4 and an increase in the expression of the transcription factor FOXA2.This provides a clue for further investigation into the effects and mechanisms of MIF on the differentiation of human embryonic stem cells.The MIF-CXCR4 axis plays a regulatory role in this process.
4.Screening and influencing factors analysis of myopia in children and adolescent in Wulong district of Chongqing
Huabin ZHENG ; Ting XIAO ; Ji LI ; Qirong HUANG ; Zhi ZHOU
International Eye Science 2025;25(2):297-300
AIM:To investigate myopia status and analyze the influence factors in children and adolescent in Wulong district of Chongqing.METHODS:Cross-sectional study. A stratified cluster sampling method was used to select 2 504 primary and secondary school students in Wulong district, and all students underwent myopia screen and questionnaire survey, statistics and analyses the data.RESULTS:Totally 2 431 students were participated in this study, and 1 217 students with myopia were screened out, the prevalence rate of myopia was 50.06%, awareness rate of myopia was 64.59%, glasses wearing rate of myopia was 51.85%. The prevalence of myopia increased with age and grade(P<0.05), the prevalence of myopia in male(46.97%)was lower than in female(53.18%), and the prevalence of myopia in township(47.06%)was lower than in urban area(52.11%; all P<0.05). Regression analysis showed that outdoor activities were protective factor for myopia, while female, myopic parents, near vision work, short sleep duration and sweet tooth were risk factors for myopia.CONCLUSION:The prevalence rate of myopia was higher in children and adolescent in Wulong district of Chongqing, awareness rate of myopia and glasses wearing rate of myopia were lower, and the genesis of myopia is highly relevant to outdoor activities, gender, myopic parents, near vision work, short sleep duration and sweet tooth.
5.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
6.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
7.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
8.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
9.Identification of active ingredients and possible mechanisms of Yijing Decoction in treating diabetic retinopathy based on liquid chromatography-mass spectrometry and network pharmacology
Limei LUO ; Ting HUANG ; Yanfang CHENG ; Yuhe MA ; Lin XIE ; Jianzhong HE ; Guanghui LIU ; Yongzheng ZHENG
International Eye Science 2025;25(8):1219-1226
AIM: To identify the primary active components and underlying mechanisms of Yijing Decoction(YJD)in treating early diabetic retinopathy(DR)based on liquid chromatography-mass spectrometry and network pharmacology.METHODS: Active components of YJD were characterized through LC-MS. Components with optimal ADME(absorption, distribution, metabolism, excretion)properties were selected as key bioactive candidates. Network pharmacology approaches were employed to predict YJD-DR therapeutic targets. Protein-protein interaction(PPI)networks, gene ontology(GO)enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis were subsequently conducted to predict core targets and networks. Critical targets and pathways were experimentally validated through Western blot.RESULTS: Ten core therapeutic targets were identified, including TNF, Alb, EGFR, STAT3, PTGS2, ESR1, PPAR, MMP9, TLR4, and MAPK. YJD was related to cancer-related signaling, fluid shear stress and atherosclerosis, and neurodegenerative diseases, encompassing key biological processes such as inflammatory response regulation, programmed cell death activation, and enhanced cell migration. Furthermore, Western blot analysis confirmed that YJD significantly inhibited high glucose-induced phosphorylation of STAT3(P-STAT3/STAT3)and ERK(P-ERK/ERK)in rat retinal microvascular endothelial cells.CONCLUSION: This study revealed YJD's pharmacodynamical basis and its multi-component, multi-target, and multi-paths pharmacology. YJD exerts therapeutic effects on DR by coordinately regulating critical signaling pathways and alleviating intraocular inflammation, thus preserving retinal vascular endothelial cells, maintaining blood-retinal barrier integrity, and facilitating retinal neurovascular repair.
10.HIF-1α promotes the inflammatory response of periodontal ligament cells under mechanical stress
WANG Feifei ; ZHENG Chengju ; CHEN Zhiyun ; LIU Ting ; WANG Yu
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(9):732-743
Objective:
To investigate the molecular regulatory mechanism of hypoxia-inducible factor-1α (HIF-1α) in mechanical stress-induced inflammatory cytokine expression in human periodontal ligament cells (hPDLCs), providing a theoretical basis and potential therapeutic target for inflammatory control during orthodontic treatment.
Methods:
This study was approved by the Institutional Ethics Committee. Primary human periodontal ligament cells (hPDLCs) were isolated and cultured in vitro. Self-renewal capacity was confirmed via colony-forming assays, while osteogenic and adipogenic differentiation potential was evaluated via Alizarin Red S staining, alkaline phosphatase (ALP) activity assays, and Oil Red O staining. An in vitro compressive force stimulation model (1.5 g/cm2, 12 h) was established to compare inflammatory cytokine expression of hPDLCs—interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and HIF-1α—between the Control group (no mechanical stimulation) and the Force group (1.5 g/cm2, 12 h) using quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence (IF) staining. Mechanically induced HIF-1α-regulated gene expression changes were analyzed through transcriptomic sequencing. To explore pharmacological inhibition, the small-molecule HIF-1α inhibitor LW-6 was applied at varying concentrations (10 μmol/L, 30 μmol/L, 50 μmol/L) to optimize the treatment dose. Subsequently, qRT-PCR, Western blot, and IF staining were conducted to evaluate inflammatory cytokine of hPDLCs and HIF-1α expression in three groups: Control (no force), Force (1.5 g/cm2, 12 h), and Force+LW6 (1.5 g/cm2, 12 h + 30 μmol/L LW-6).
Results:
Primary hPDLCs demonstrated self-renewal capacity along with osteogenic and adipogenic differentiation potential. Compared to the Control group, the Force group exhibited significantly increased mRNA and protein expression levels of inflammatory cytokines IL-1β, IL-6, and TNF-α, along with enhanced fluorescence intensity of IL-1β and TNF-α. Transcriptomic analysis revealed that mechanical compressive force activated the HIF-1 signaling pathway, which subsequently mediated inflammatory responses and bone remodeling processes in hPDLCs. Furthermore, the mRNA and protein levels of HIF-1α were considerably elevated in the Force group compared to the Control group. Treatment with LW-6 (10, 30, or 50 μmol/L) effectively suppressed HIF-1α expression, with 30 μmol/L LW-6 identified as the optimal concentration for intervention. In subsequent experiments, the Force group showed significant upregulation in mRNA/protein expression of IL-1β, IL-6, and TNF-α compared to the Control group, as well as intensified HIF-1α, IL-1β, and TNF-α fluorescence signals. Conversely, the Force+LW6 group (mechanical force + 30 μmol/L LW-6) exhibited a notable reduction in inflammatory cytokine expression levels and a weakening of HIF-1α, IL-1β, and TNF-α fluorescence signals compared to the Force group.
Conclusion
HIF-1α potentiates mechanical stress-induced inflammatory responses in hPDLCs and may serve as a promising therapeutic target for mitigating orthodontic-associated periodontal inflammation.


Result Analysis
Print
Save
E-mail