1.Mechanism of Huangqi Guizhi Wuwutang in Treatment of Sarcopenia Associated with Rheumatoid Arthritis by Improving Skeletal Muscle Homeostasis Through Regulation of Autophagy
Yakun WAN ; Yuan LIU ; Yuan QU ; Jingyu GUO ; Ting LIU ; Zhihui BAI ; Di ZHANG ; Ping JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):12-23
ObjectiveThis study aims to explore the mechanism of action of Huangqi Guizhi Wuwutang in treating rheumatoid arthritis (RA)-associated sarcopenia by regulating autophagy and improving skeletal muscle homeostasis based on network pharmacology,bioinformatics,machine learning,and animal experiments. MethodsActive ingredients and targets of Huangqi Guizhi Wuwutang were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),PubChem,and SwissTargetPrediction databases. RA-related datasets were retrieved from the GEO database,and differential genes were screened. Sarcopenia-related targets were searched through GeneCards and the Comparative Toxicology Database (CTD),and autophagy-related gene sets were downloaded from the Human Autophagy Database (HADb). Their intersection was analyzed to identify autophagy-related therapeutic targets,followed by enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database,and key targets were selected using multiple methods. Machine learning was applied to predict models based on the expression profiles of intersecting targets,and nomogram models were constructed based on key targets. Molecular docking of the top four active ingredients with key targets was performed using AutoDockVina. A collagen-induced arthritis (CIA) rat model was established using bovine type Ⅱ collagen,with SD rats divided into groups including a blank group,a model group,and low-,medium-,and high-dose groups of Huangqi Guizhi Wuwutang (2.44,4.88,and 9.76 g·kg-1) and administered for five consecutive weeks. Joint scores and gastrocnemius muscle mass were recorded and analyzed after modeling. Hematoxylin and eosin (HE) staining and Masson's staining were used to observe pathological changes in muscle tissue. Immunofluorescence staining was applied to observe the protein expression levels of myosin heavy chain (MYHC) and insulin-like growth factor-1 (IGF-1) in skeletal muscle. Western blot was used to detect the protein expression levels of autophagy-related proteins ATG5,Beclin1,LC3B,muscle-specific proteins (MuRF1),MaFbx,and MYHC. Real-time quantitative reverse transcription PCR (Real-time PCR) was performed to measure the mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,MaFbx,and MYHC in muscle tissue. ResultsNetwork pharmacology revealed that Huangqi Guizhi Wuwutang shared 25 common targets with autophagy genes related to RA-associated sarcopenia. The PPI network and machine learning identified six key targets,which were primarily involved in autophagy and inflammatory pathways. Animal experiments showed that compared to the blank group,the model group had significantly higher joint scores (P<0.01) and lower gastrocnemius muscle index (P<0.01). HE staining indicated a significant reduction in the cross-sectional area of gastrocnemius muscle fibers,with notable inflammatory cell infiltration and muscle atrophy in the model group. Masson's staining revealed obvious collagen fiber proliferation and deposition,with significant muscle fibrosis in the model group. The protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx were significantly increased (P<0.01),while the protein expression of MYHC and IGF1 was significantly downregulated (P<0.01). Compared with the model group,the high-dose group of Huangqi Guizhi Wuwutang showed significantly reduced protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx (P<0.01) and increased protein expression levels of MYHC and IGF1 (P<0.01). The cross-sectional area of muscle fibers increased,and the muscle cell morphology approached normal. Moreover,pathological abnormalities in the gastrocnemius muscle were significantly improved,with reduced collagen fiber proliferation (P<0.01). ConclusionHuangqi Guizhi Wuwutang can mediate autophagy by regulating the expression of ATG5,Beclin1,LC3B,and IGF1,thereby reducing skeletal muscle catabolism and improving skeletal muscle homeostasis,which contributes to the treatment of RA-associated sarcopenia. The findings provide insight into the mechanisms underlying the effects of Huangqi Guizhi Wuwutang in the treatment of RA-related sarcopenia and offer a reference for its enhanced clinical application.
2.Association between physical activity and sleep quality among middle school students
LIU Yuan, ZHANG Ting,YIN Xiaojian, WU Huipan, WANG Jinxian, ZHANG Yingkun, GUO Yaru
Chinese Journal of School Health 2025;46(6):783-787
Objective:
To explore the association between physical activity and sleep quality among middle school students, so as to provide reference for adolescent sleep improvement.
Methods:
From September to December 2023, 5 713 middle school students aged 13-18 years were selected from Shanghai, Suzhou, Taiyuan, Wuyuan, Xingyi and Urumqi by stratified cluster random sampling method. Pittsburgh Sleep Quality Index (PSQI) and Evaluation of Physical Activity Levels of Children and Adolescents Aged 7-18 Years were used to investigate and evaluate sleep quality and physical activity. Comparisons between groups were made using the t-test, Mann-Whitney U-test, and associations between physical activity and sleep quality of middle school students were analyzed using Spearman correlation and linear regression methods.
Results:
The total PSQI scores were 4.0(2.0,6.0) and 5.0 (3.0,6.0) for boys and girls, respectively, with significant sex difference ( Z =-10.90, P <0.01); light physical activity(LPA) and moderate to vigorous physical activity(MVPA) of boys were 18.57 (2.86, 42.86) and 68.57 (35.71, 119.18)min, and girls were 14.29 (0.00, 30.00) and 55.71 (31.43, 92.86)min respectively, and the differences were statistically significant ( Z =3.65, -8.65 , P <0.01). The results of Spearman correlation regression showed that adolescents MVPA was negatively correlated with the total PSQI score ( r =-0.04, P <0.01). After controlling for variables such as mental health, nutritional status and maximum oxygen uptake, the results of linear regression analysis showed that PSQI total score negatively predicted MVPA among middle school students ( B =-4.76, 95% CI =-7.16 to -2.36, P <0.05).
Conclusion
The longer the duration of physical activity among middle school students, the better the quality of sleep.
3.Identification of active ingredients and possible mechanisms of Yijing Decoction in treating diabetic retinopathy based on liquid chromatography-mass spectrometry and network pharmacology
Limei LUO ; Ting HUANG ; Yanfang CHENG ; Yuhe MA ; Lin XIE ; Jianzhong HE ; Guanghui LIU ; Yongzheng ZHENG
International Eye Science 2025;25(8):1219-1226
AIM: To identify the primary active components and underlying mechanisms of Yijing Decoction(YJD)in treating early diabetic retinopathy(DR)based on liquid chromatography-mass spectrometry and network pharmacology.METHODS: Active components of YJD were characterized through LC-MS. Components with optimal ADME(absorption, distribution, metabolism, excretion)properties were selected as key bioactive candidates. Network pharmacology approaches were employed to predict YJD-DR therapeutic targets. Protein-protein interaction(PPI)networks, gene ontology(GO)enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis were subsequently conducted to predict core targets and networks. Critical targets and pathways were experimentally validated through Western blot.RESULTS: Ten core therapeutic targets were identified, including TNF, Alb, EGFR, STAT3, PTGS2, ESR1, PPAR, MMP9, TLR4, and MAPK. YJD was related to cancer-related signaling, fluid shear stress and atherosclerosis, and neurodegenerative diseases, encompassing key biological processes such as inflammatory response regulation, programmed cell death activation, and enhanced cell migration. Furthermore, Western blot analysis confirmed that YJD significantly inhibited high glucose-induced phosphorylation of STAT3(P-STAT3/STAT3)and ERK(P-ERK/ERK)in rat retinal microvascular endothelial cells.CONCLUSION: This study revealed YJD's pharmacodynamical basis and its multi-component, multi-target, and multi-paths pharmacology. YJD exerts therapeutic effects on DR by coordinately regulating critical signaling pathways and alleviating intraocular inflammation, thus preserving retinal vascular endothelial cells, maintaining blood-retinal barrier integrity, and facilitating retinal neurovascular repair.
4.Prediction of retinopathy progression through macular layer thickness in diabetic patients detected by optical coherence tomography
Ting XI ; Zheyao GU ; Zhenxing LIU ; Ruizhu SUN ; Xiangying LUO
International Eye Science 2025;25(8):1240-1246
AIM: To predict diabetic retinopathy(DR)progression through macular layer thickness in diabetic patients detected by optical coherence tomography(OCT).METHODS: Retrospective study. The clinical data of 100 cases(200 eyes)of diabetic patients admitted to our hospital from January 2023 to September 2024 were collected. According to the international clinical DR classification, they were divided into the non-diabetic retinopathy(NDR)group with 32 cases(64 eyes), the non-proliferative diabetic retinopathy(NPDR)group with 38 cases(76 eyes), and the proliferative diabetic retinopathy(PDR)group with 30 cases(60 eyes). At the same time, 49 cases(98 eyes)of healthy controls whose age and gender were matched with those of the diabetic patients were collected as the normal group. All patients underwent OCT examination. The thickness changes of the retinal nerve fiber layer(RNFL), ganglion cell layer(GCL), inner plexiform layer(IPL), outer nuclear layer(ONL), photoreceptor cell layer and total retinal thickness(RT)in the subregions of the macular area were compared among the groups. The Eta coefficient was used to analyze the correlation between them and the severity of DR.RESULTS: The thickness of RNFL, GCL, IPL, ONL and photoreceptor cell layer in each sub-region and the average of macular area in the PDR group was significantly lower than that in the NDR and normal groups, while the average RT thickness was significantly higher than that in the NPDR, NDR and normal groups(all P<0.05). The thickness of RNFL(central area, upper inner and outer rings and lower inner and outer rings and average), GCL(upper inner and outer rings and lower inner and outer rings and average), IPL(upper inner ring), ONL(central, upper inner ring and lower inner ring)and photoreceptor cell layer(upper inner and outer rings and lower inner and outer rings and average)in macular area of the PDR group was significantly thicker than that in the NPDR group(all P<0.05). The thickness of RNFL, GCL, IPL, ONL and photoreceptor cell layer in each sub-region and the average of macular area in the NPDR group was significantly lower than that in the NDR and normal groups, while the average RT thickness was significantly thicker than that in the NDR and normal groups(all P<0.05). There was no statistically significant difference in the above indicators between the NDR group and the normal group(all P>0.05). The severity of DR was significantly correlated with the average thickness of RNFL, GCL, IPL, ONL, photoreceptor cell layer and RT in macular area(all P<0.001).CONCLUSION: OCT measurement of the thickness of RNFL, GCL, IPL, ONL, photoreceptor cell layer and RT in the macular area in the diabetic patients can evaluate the progression of DR.
5.HIF-1α promotes the inflammatory response of periodontal ligament cells under mechanical stress
WANG Feifei ; ZHENG Chengju ; CHEN Zhiyun ; LIU Ting ; WANG Yu
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(9):732-743
Objective:
To investigate the molecular regulatory mechanism of hypoxia-inducible factor-1α (HIF-1α) in mechanical stress-induced inflammatory cytokine expression in human periodontal ligament cells (hPDLCs), providing a theoretical basis and potential therapeutic target for inflammatory control during orthodontic treatment.
Methods:
This study was approved by the Institutional Ethics Committee. Primary human periodontal ligament cells (hPDLCs) were isolated and cultured in vitro. Self-renewal capacity was confirmed via colony-forming assays, while osteogenic and adipogenic differentiation potential was evaluated via Alizarin Red S staining, alkaline phosphatase (ALP) activity assays, and Oil Red O staining. An in vitro compressive force stimulation model (1.5 g/cm2, 12 h) was established to compare inflammatory cytokine expression of hPDLCs—interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and HIF-1α—between the Control group (no mechanical stimulation) and the Force group (1.5 g/cm2, 12 h) using quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence (IF) staining. Mechanically induced HIF-1α-regulated gene expression changes were analyzed through transcriptomic sequencing. To explore pharmacological inhibition, the small-molecule HIF-1α inhibitor LW-6 was applied at varying concentrations (10 μmol/L, 30 μmol/L, 50 μmol/L) to optimize the treatment dose. Subsequently, qRT-PCR, Western blot, and IF staining were conducted to evaluate inflammatory cytokine of hPDLCs and HIF-1α expression in three groups: Control (no force), Force (1.5 g/cm2, 12 h), and Force+LW6 (1.5 g/cm2, 12 h + 30 μmol/L LW-6).
Results:
Primary hPDLCs demonstrated self-renewal capacity along with osteogenic and adipogenic differentiation potential. Compared to the Control group, the Force group exhibited significantly increased mRNA and protein expression levels of inflammatory cytokines IL-1β, IL-6, and TNF-α, along with enhanced fluorescence intensity of IL-1β and TNF-α. Transcriptomic analysis revealed that mechanical compressive force activated the HIF-1 signaling pathway, which subsequently mediated inflammatory responses and bone remodeling processes in hPDLCs. Furthermore, the mRNA and protein levels of HIF-1α were considerably elevated in the Force group compared to the Control group. Treatment with LW-6 (10, 30, or 50 μmol/L) effectively suppressed HIF-1α expression, with 30 μmol/L LW-6 identified as the optimal concentration for intervention. In subsequent experiments, the Force group showed significant upregulation in mRNA/protein expression of IL-1β, IL-6, and TNF-α compared to the Control group, as well as intensified HIF-1α, IL-1β, and TNF-α fluorescence signals. Conversely, the Force+LW6 group (mechanical force + 30 μmol/L LW-6) exhibited a notable reduction in inflammatory cytokine expression levels and a weakening of HIF-1α, IL-1β, and TNF-α fluorescence signals compared to the Force group.
Conclusion
HIF-1α potentiates mechanical stress-induced inflammatory responses in hPDLCs and may serve as a promising therapeutic target for mitigating orthodontic-associated periodontal inflammation.
6.Effectiveness of autologous platelet-rich plasma for blood conservation and its prognostic impact in patients with type A aortic dissection
Qian ZHENG ; Shoumei CHEN ; Ming XIE ; Shenshen ZHI ; Kun LIU ; Ting JIANG
Chinese Journal of Blood Transfusion 2025;38(8):1035-1042
Objective: To investigate the effects of autologous platelet-rich plasma (aPRP) collected using a continuous blood cell separator on blood conservation and prognosis in patients with type A aortic dissection. Methods: The clinical data of patients who underwent emergency aortic replacement for acute type A aortic dissection at our hospital from January 2020 to December 2023 were respectively analyzed. Patients were divided into two groups based on whether they received aPRP collection before surgery for subsequent reinfusion: the aPRP group (n=32) and the control group (n=35). The volume of aPRP collected and the platelet concentration in the aPRP were recorded. The volumes of allogeneic blood and blood products transfused, and the associated costs during hospitalization were compared between two groups. Intraoperative blood loss, perioperative laboratory parameter changes, 24-hour postoperative drainage volume, duration of ICU stay and mechanical ventilation, length of hospital stay, and mortality rate of the two groups were also compared. Results: The platelet concentration in aPRP was (491.5±85.4)×10
/L, accounting for (24.1±9.6)% of the patient's total platelet count. The volume of aPRP collected accounted for (23.0±6.3)% of the patient's total plasma volume. Compared with the control group, the aPRP group demonstrated significantly reduced transfusion volumes of allogeneic red blood cells, plasma, and platelets (P<0.05), along with significantly lower blood-related costs during hospitalization (P<0.05). Postoperative coagulation parameters (APTT, PT, INR, and TEG) were significantly improved (P<0.05), and platelet counts were markedly increased (P<0.05) in aPRP group as compared with the control group. No statistically significant differences were observed in postoperative use of prothrombin complex concentrate and fibrinogen between the two groups. Similarly, there were no significant differences in postoperative 24-hour drainage volume, 24-hour extubation rate, ICU length of stay, duration of mechanical ventilation, or total hospital length of stay. The incidence of complications and mortality did not differ significantly between the two groups. Conclusion: The administration of aPRP significantly reduces the requirement for perioperative allogeneic blood transfusion in patients undergoing surgery for type A aortic dissection. Furthermore, it enhances coagulation function and reduces associated transfusion costs, thereby establishing itself as an effective and safe strategy for blood conservation.
7.Association between household solid fuel use for cooking and depressive symptoms among middle-aged and elderly adults in rural China: Evidence from the China Family Panel Studies Database
Ting YANG ; Yong LIU ; Xufeng LI ; Yun GAI ; Zhihao XIE ; Junkui WANG ; Yong YU ; Jingxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(8):926-931
Background Although current evidence suggests a link between outdoor air pollution and depressive symptoms, the effect of solid fuel use (a significant indoor air pollutant) on depressive symptoms in China's rural middle-aged and elderly population remains poorly understood. Objective To explore the association between solid fuel use for cooking and depressive symptoms among middle-aged and elderly people in rural areas of China, and to provide a basis for the prevention and control of depressive symptoms among residents in rural areas. Methods Data were obtained from the 2020 China Family Panel Studies (CFPS), depressive symptoms were assessed using 8-item Center for Epidemiologic Studies Depression Scale (CES-D), and cooking fuel type was self-reported. Subsequently, two-level binary unconditional logistic regression models were fitted to assess the impact of solid fuel use for cooking on depressive symptoms. Results A total of
8.Interpretation of the TRIPOD-LLM reporting guideline for studies using large language models
Xiaoqin ZHOU ; Huizhen LIU ; Ting WANG ; Xuemei LIU ; Deying KANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):940-946
As the volume of medical research using large language models (LLM) surges, the need for standardized and transparent reporting standards becomes increasingly critical. In January 2025, Nature Medicine published statement titled by TRIPOD-LLM reporting guideline for studies using large language models. This represents the first comprehensive reporting framework specifically tailored for studies that develop prediction models based on LLM. It comprises a checklist with 19 main items (encompassing 50 sub-items), a flowchart, and an abstract checklist (containing 12 items). This article provides an interpretation of TRIPOD-LLM’s development methods, primary content, scope, and the specific details of its items. The goal is to help researchers, clinicians, editors, and healthcare decision-makers to deeply understand and correctly apply TRIPOD-LLM, thereby improving the quality and transparency of LLM medical research reporting and promoting the standardized and ethical integration of LLM into healthcare.
9.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
10.Compound Glycyrrhizin Tablets Ameliorate Liver Injury Induced by Tripterygium Glycosides Tablet by Regulating Cholesterol Metabolism
Xiaotong FU ; Chunyu CAO ; Chun LI ; Chenna LU ; Ting LIU ; Yifei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):46-55
ObjectiveTo investigate the mechanism of liver injury induced by tripterygium glycosides tablets (TG) and the molecular mechanism of compound glycyrrhizin tablets (CG) in alleviating the abnormalities of cholesterol metabolism caused by TG via cholesterol metabolism. MethodsAccording to the body weights, male Sprague-Dawley (SD) rats were randomly grouped as follows: control (pure water), low-dose TG (TG-L, 189.0 mg·kg-1·d-1), high-dose TG (TG-H, 472.5 mg·kg-1·d-1), TG-L+CG (189.0 mg·kg-1·d-1 TG + 20.25 mg·kg-1·d-1 CG), and TG-H+CG (472.5 mg·kg-1·d-1 TG + 20.25 mg·kg-1·d-1 CG), with 6 rats in each group. Rats were administrated with corresponding drugs once daily for 3 weeks. At the end of the last administration, the mRNA and protein levels of liver X receptor-alpha (LXR-α), low-density lipoprotein receptor (LDLR), adenosine triphosphate-binding cassette transporter A1 (ABCA1), adenosine triphosphate-binding cassette transporter G1 (ABCG1), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), cholesterol 7α-hydroxylase (CYP7A1), cholesterol 12α-hydroxylase (CYP8B1), and sterol 27-hydroxylase (CYP27A1) in the liver tissue were determined by Real-time PCR and Western blotting, respectively. The level of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), a regulatory enzyme of cholesterol synthesis, was measured by enzyme-linked immunosorbent assay (ELISA). HepG2 cells were used to observe the effect of TG on the cell proliferation in vitro. Specifically, HepG2 cells were grouped as follows: Low-dose TG (TG-l, 15 mg·L-1), medium-dose TG (TG-m, 45 mg·L-1), high-dose TG (TG-h, 135 mg·L-1), fenofibrate (FB, 10 μmol·L-1), CG extract, TG-h+FB (135 mg·L-1 TG + 10 μmol·L-1 FB), TG-m+FB (45 mg·L-1 TG + 10 μmol·L-1 FB), TG-l+FB (15 mg·L-1 TG + 10 μmol·L-1 FB), TG-h+CG (135 mg·L-1 TG + 60 μmol·L-1 CG), TG-m+CG (45 mg·L-1 TG + 60 μmol·L-1 CG), and TG-l+CG (15 mg·L-1 TG + 60 μmol·L-1 CG). The mRNA and protein levels of LXR-α, ABCG1, LDLR, CYP7A1, CYP8B1, and CYP27A1 in HepG2 cells were determined by Real-time PCR and Western blotting, respectively. ResultsThe rat experiment showed that compared with the control group, the TG-H group showed down-regulated mRNA levels of CYP7A1, CYP8B1, and CYP27A1 in the liver tissue (P<0.05, P<0.01), which were up-regulated by the application of CG (P<0.05, P<0.01), and the TG-H+CG group showed up-regulated mRNA level of LDLR (P<0.01). Compared with the control group, the TG-L and TG-H groups showed down-regulated protein levels of LDLR, CYP7A1, and CYP8B1 in the liver tissue (P<0.05, P<0.01). In addition, the protein levels of ABCG1 and LXR-α were down-regulated in the TG-H and TG-L groups, respectively (P<0.05). Compared with TG alone, TG+CG up-regulated the protein levels of ABCG1 and LDLR (P<0.05, P<0.01), and the protein levels of CYP7A1 and CYP8B1 in the TG-H+CG group were up-regulated (P<0.05, P<0.01). The cell experiment showed that compared with the control group, the TG-h group presented up-regulated mRNA level of LXR-α (P<0.01), and the TG-m and TG-h groups showcased down-regulated mRNA levels of LDLR and CYP7A1 (P<0.01) and up-regulated mRNA level of CYP27A1 (P<0.01) in HepG2 cells. The combination of CG with TG restored the above changes (P<0.01). Western blotting results showed that compared with the control group, the TG-m and TG-h groups showed down-regulated protein levels of LXR-α, ABCG1, LDLR, CYP7A1, CYP8B1, and CYP27A1 in HepG2 cells (P<0.01). Compared with the TG-h group, the TG-h+CG group showed up-regulated protein level of LDLR (P<0.05). Compared with the TG-m group, the TG-m+CG group showcased up-regulated protein levels of LDLR, ABCG1, CYP7A1, and CYP27A1 (P<0.05, P<0.01). ConclusionThe administration of TG at 189.0, 472.5 mg·kg-1 for 3 weeks could modulate the signaling pathways associated with cholesterol efflux, endocytosis, and cholesterol biotransformation in hepatocytes, leading to the accumulation of cholesterol and subsequent liver injury in rats. CG could ameliorate the liver injury induced by lipid metabolism disorders caused by TG by up-regulating the expression of LXR-α, LDLR, ABCG1, CYP7A1, CYP8B1, and CYP27A1 to promote cholesterol biotransformation.


Result Analysis
Print
Save
E-mail