1.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates.
2.Dynamic observation on capillarization of liver sinusoidal endothelial cells induced by Echinococcus multilocularis infection
Renjie ZHANG ; Jun XIE ; Fanna WEI ; Xiaojin MO ; Peng SONG ; Yuchun CAI ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Lin LIN ; Ting ZHANG ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2024;36(1):34-43
Objective To investigate the capillarization of liver sinusoidal endothelial cells (LSECs) and its association with hepatic fibrosis during the development of alveolar echinococcosis, so as to provide the basis for unraveling the mechanisms underlying the role of LSEC in the development and prognosis of hepatic injuries and hepatic fibrosis caused by alveolar echinococcosis. Methods Forty C57BL/6 mice at ages of 6 to 8 weeks were randomly divided into a control group and 1-, 2- and 4-week infection groups, of 10 mice in each group. Each mouse in the infection groups was intraperitoneally injected with 2 000 Echinococcus multilocularis protoscoleces, while each mouse in the control group was given an equal volume of phosphate-buffered saline using the same method. All mice were sacrificed 1, 2 and 4 weeks post-infection and mouse livers were collected. The pathological changes of livers were observed using hematoxylin-eosin (HE) staining, and hepatic fibrosis was evaluated through semi-quantitative analysis of Masson’s trichrome staining-positive areas. The activation of hepatic stellate cells (HSCs) and extracellular matrix (ECM) deposition were examined using immunohistochemical staining of α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1A1), and the fenestrations on the surface of LSECs were observed using scanning electron microscopy. Primary LSECs were isolated from mouse livers, and the mRNA expression of LSEC marker genes Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf was quantified using real-time fluorescence quantitative PCR (qPCR) assay. Results Destruction of local liver lobular structure was observed in mice 2 weeks post-infection with E. multilocularis protoscoleces, and hydatid cysts, which were surrounded by granulomatous tissues, were found in mouse livers 4 weeks post-infection. Semi-quantitative analysis of Masson’s trichrome staining showed a significant difference in the proportion of collagen fiber contents in mouse livers among the four groups (F = 26.060, P < 0.001), and a higher proportion of collagen fiber contents was detected in mouse livers in the 4-week infection group [(11.29 ± 2.58)%] than in the control group (P < 0.001). Immunohistochemical staining revealed activation of a few HSCs and ECM deposition in mouse livers 1 and 2 weeks post-infection, and abundant brown-yellow stained α-SMA and COL1A1 were deposited in the lesion areas in mouse livers 4 weeks post-infection, which spread to surrounding tissues. Semi-quantitative analysis revealed significant differences in α-SMA (F = 7.667, P < 0.05) and COL1A1 expression (F = 6.530, P < 0.05) in mouse levers among the four groups, with higher α-SMA [(7.13 ± 3.68)%] and COL1A1 expression [(13.18 ± 7.20)%] quantified in mouse livers in the 4-week infection group than in the control group (both P values < 0.05). Scanning electron microscopy revealed significant differences in the fenestration frequency (F = 37.730, P < 0.001) and porosity (F = 16.010, P < 0.001) on the surface of mouse LSECs among the four groups, and reduced fenestration frequency and porosity were observed in the 1-[(1.22 ± 0.48)/μm2 and [(3.05 ± 0.91)%] and 2-week infection groups [(3.47 ± 0.10)/μm2 and (7.57 ± 0.23)%] groups than in the control group (all P values < 0.001). There was a significant difference in the average fenestration diameter on the surface of mouse LSECs among the four groups (F = 15.330, P < 0.001), and larger average fenestration diameters were measured in the 1-[(180.80 ± 16.42) nm] and 2-week infection groups [(161.70 ± 3.85) nm] than in the control group (both P values < 0.05). In addition, there were significant differences among the four groups in terms of Stabilin-1 (F = 153.100, P < 0.001), Stabilin-2 (F = 57.010, P < 0.001), Ehd3 (F = 31.700, P < 0.001), CD209b (F = 177.400, P < 0.001), GATA4 (F = 17.740, P < 0.001), and Maf mRNA expression (F = 72.710, P < 0.001), and reduced mRNA expression of Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf genes was quantified in three infection groups than in the control group (all P values < 0.001). Conclusions E. multilocularis infections may induce capillarization of LSECs in mice, and result in a reduction in the expression of functional and phenotypic marker genes of LSECs, and capillarization of LSECs occurs earlier than activation of HSC and development of hepatic fibrosis.
3. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
4.Association between ulcerative colitis and pancreatitis: a Mendelian randomization study
XU Jun ; XU Yaxin ; GAO Yanan ; YAO Ting ; SUN Suya ; CHEN Yamei
Journal of Preventive Medicine 2024;36(1):26-29, 33
Objective :
To examine the causal relationship between ulcerative colitis (UC) and pancreatitis, to provide basis for early screening of pancreatitis among UC patients.
Methods:
Genomic data of UC were obtained from 47 745 European individuals pooled by the International Inflammatory Bowel Disease Genetics Consortium, including 156 116 single nucleotide polymorphism (SNP), and genomic data of pancreatitis were obtained from 198 166 European individuals pooled from FinnGen, including 16 380 428 SNPs. Mendelian randomization (MR) analysis was performed using the inverse variance weighted (IVW) method with 72 UC-associated SNPs as instrumental variables and pancreatitis as the study outcome. The heterogeneity was assessed using Cochran Q test, the horizontal pleiotropy was assessed using MR-Egger regression, MR-PRESSO was performed with the exclusion of outliers, and effect of individual SNP on the results was tested with the leave-one-out method.
Results:
MR analysis results showed that patients with genetically predicted UC had an increased risk of pancreatitis relative to those without UC (OR=1.076, 95%CI: 1.019-1.136, P<0.05). Cochran Q test showed no heterogeneity (P>0.05), and MR-Egger regression did not reveal horizontal pleiotropy of instrumental variables (P>0.05). The MR analysis results were robust after removing SNP one by one.
Conclusions
Genetically predicted UC is associated with an increased risk of pancreatitis. The screening for pancreatitis risk should be enhanced in patients with UC.
5.Identification of Phenolic Acid Derivatives in Danshen Using MS3 and MS2 Spectra Matching Strategy
Han LI ; Ke ZHANG ; Ting LI ; Wei CHEN ; Jun LI ; Peng-Fei TU ; Yun-Fang ZHAO ; Yue-Lin SONG
Chinese Journal of Analytical Chemistry 2024;52(2):267-276,中插19-中插27
"MS/MS spectrum to structure"plays a critical role in the confirmative identification of complicated matrices and is currently regarded as an extremely challenging endeavor.MS/MS information provides vital clues to structural identification.In this study,a strategy was proposed to facilitate unambiguous identification through matching MS3 with MS2 spectra.Initially,MS3 spectra of the featured ions(c-and y-type ions)generated by the decomposition of ester functional group in esters and the MS2 spectrum of the structural unit([M-H]-)were all captured on the Qtrap-MS platform equipped with two tandem-in-space collision cells,including the second quadrupole cell(q2)and linear ion trap(LIT)chambers(actually the third quadrupole unit).Subsequently,the MS/MS spectrum matching between MS3 spectra of the ester compound and MS2 spectra of the structural unit(s)were achieved.As a result,the findings corresponding to MS3 and MS2 spectra matching were summarized.Finally,based on HR-MS/MS information of total salvianolic acid derivatives(TSA),36 kinds of compounds were preliminarily identified through matching with literature information and database retrieval.The applicability of MS3 and MS2 spectra matching strategy was further justified by the confirmative identification of phenolic acid compounds(Rosmarinic acid and salvianolic acid B)in TSA.Above all,MS3 and MS2 spectra matching strategy was quite meaningful towards advancing"MS/MS spectrum to structure"analysis through recognizing and identifying featured fragment ions,and also provided inspiration and new insights for the structural characterization.
6.Prognostic factor and its predictive value of patients with Wilson's disease-related acute-on-chronic liver failure
Lu-Lu TANG ; Huai-Zhen CHEN ; Jing ZHANG ; Ting DONG ; Jun LI ; Hai-Lin JIANG ; Wen-Ming YANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):131-136
Objective To explore the prognostic factor and its predictive value of patients with Wilson disease-related acute-on-chronic liver failure(WD-ACLF).Methods The clinical data of 70 patients diagnosed as WD-ACLF admitted to the Department of Encephalopathy of the First Affiliated Hospital of Anhui University of Chinese Medicine from January 1,2017 to January 1,2022 were retrospectively collected.According to the 12-week prognosis,patients were divided into survival group(n=36)and death group(n=34).The data of the two groups were analyzed by univariate and multivariate logistic analysis to screen the prognostic risk factors and evaluate their predictive value.The model coefficient is omnibus tested,and the model-fitting degree is evaluated by the Hosmer-Lemeshow test.ROC curve was used to analyze the prognostic value for WD-ACLF between the new model and chronic liver failure-sequential organ failure assessment(CLIF-SOFA)score,model for end-stage liver disease(MELD)score and Child-Turcotte-Pugh(CTP)score.Results A total of 70 WD-ACLF patients were enrolled in present study,including 36 cases in survival group[22 males and 14 females with median age of 30.0(17.3,40.0)]and 34 cases in death group[25 males and 9 females with median age of 34.0(28.8,41.0)].Univariate analysis showed that the course of disease,prothrombin time(PT),activated partial thromboplastin time(APTT)were shorter in survival group than that in death group,the white blood cells(WBC),international normalized ratio(INR),aspartate transaminase(AST),total bilirubin(TBIL),blood urea nitrogen(BUN),creatinine(Cre)and ceruloplasmin(CER)levels and the proportion of infection,ascites,and upper gastrointestinal bleeding were lower in survival group than those in death group,however,the proportion of infection,ascites and upper digestive bleeding in the survival group were lower than those in the death group.Meanwhile,the red blood cells(RBC),hemoglobin(Hb),Na+ and total cholesterol(TC)level in the survival group were higher than those in the death group(P<0.05 or P<0.01).The results of multivariate logistic regression analysis showed that disease course(OR=1.176,95%CI 1.043-1.325),INR(OR=7.635,95%CI 1.767-32.980),TBIL(OR=1.012,95%CI 1.003-1.021),and upper gastrointestinal bleeding(OR=11.654,95%CI 1.029-131.980)were independent risk factors affecting the prognosis of WD-ACLF(P<0.05).Based on the results of logistic regression analysis,a joint model for predicting the prognosis of WD-ACLF was established.The AUC of the model for evaluating the prognosis of WD-ACLF was 0.941,which was greater than the CLIF-SOFA score(AUC=0.802),MELD score(AUC=0.897),and CTP score(AUC=0.722).Conclusions The course of disease,TBIL,INR,and upper gastrointestinal bleeding are risk factors that affect the prognosis of WD-ACLF.The prognosis model established based on this can more accurately predict the prognosis of WD-ACLF patients,and its predictive value is superior to CLIF-SOFA score,MELD score,and CTP score.
7.Knockdown of BMI1 Enhances The Sensitivity of Cervical and Endometrial Cancer Cells to Paclitaxel
Yi-Ting ZHAO ; Yan LIN ; Wei-Li YANG ; Jun CHEN
Progress in Biochemistry and Biophysics 2024;51(4):924-943
ObjectiveTo study the effects of BMI1 on the proliferation and drug resistance of cervical cancer (CC) and endometrial cancer (EC) cells. In addition, the mechanism of paclitaxel (PTX) resistance induced by BMI1 was explored. MethodsIn this study, we utilized the GTEx, Cbioportal, TCGA, and CPTAC databases to comprehensively analyze the mutation rate as well as mRNA and protein expression profiles of BMI1 in CC and EC. Subsequently, immunohistochemistry (IHC) analysis was employed to evaluate the protein expression levels of BMI1 in 40 pairs of CC and 40 pairs of EC tissue samples. Western blot was conducted to investigate alterations in downstream factor protein levels upon BMI1 knockdown in CC and EC cells. Furthermore, functional experiments were performed to elucidate the role of BMI1 in CC and EC cells. Finally, we assessed the synergistic anti-growth effect by combining BMI1 knockdown with paclitaxel treatment in vitro. ResultsThe Cbioportal database revealed that BMI1 amplification, misinterpretation, and splicing occurred in 1.5% of CC patients and 1.9% of EC patients. Mining the data from TCGA and CPTAC databases, high mRNA levels of BMI1 were associated with the pathological type of CC and lower overall survival, and high protein levels of BMI1 were related to EC’s pathological type and tumor grade. Furthermore, the BMI1 protein level is overexpressed in cancer tissues of CC and EC compared with normal tissues, as detected by IHC analysis. Besides, drug sensitivity experiments showed that overexpression of BMI1 resulted in decreased sensitivity of HeLa and HEC-1-A cells to a variety of anticancer drugs, including paclitaxel. In order to further analyze the relationship between BMI1 and paclitaxel resistance, Western blot was used to detect the changes in the protein levels of downstream factors of BMI1 in HeLa and HEC-1-A cells after BMI1 knockdown. The results showed that the level of anti-apoptotic factor Bcl-2 protein decreased, while that of pro-apoptotic factor BAX increased with BMI1 knockdown. Additionally, we showed that high expression of BMI1 promoted the proliferation and migration of CC and EC cells in vitro. Moreover, CC and EC cells with low BMI1 expression were more sensitive to the paclitaxel. ConclusionThe expression of BMI1 is significantly upregulated in tumor tissues from patients with cervical and endometrial cancer, and silencing BMI1 makes CC and EC cells more sensitive to paclitaxel via enhancing pro-apoptotic regulation.
8.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
9.Application of CRISPR/Cas-based Electrochemical Biosensors for Tumor Detection
Shuang LI ; Zhi CHEN ; Yun-Xia HUANG ; Guo-Jun ZHAO ; Ting JIANG
Progress in Biochemistry and Biophysics 2024;51(8):1771-1787
Tumors represent one of the primary threats to human life, with the dissemination of malignant tumors being a leading cause of mortality among cancer patients. Early diagnosis of tumors can reliably predict their progression, significantly reducing mortality rates. Tumor markers, including circulating tumor cells, exosomes, proteins, circulating tumor DNA, miRNAs and so on, generated during the tumor development process, have emerged as effective approach for early tumor diagnosis. Several methods are currently employed to detect tumor markers, such as polymerase chain reaction, Northern blotting, next-generation sequencing, flow cytometry, and enzyme-linked immunosorbent assay. However, these methods often suffer from time-consuming process, high costs, low sensitivity, and the requirement for specialized personnel. Therefore, a new rapid, sensitive, and specific tumor detection method is urgently needed.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, originating from the adaptive immune system of bacteria, has found extensive applications in gene editing and nucleic acid detection. Based on the structure and function of Cas proteins, the CRISPR/Cas system can be classified into two classes and six types. Class I systems consist of multiple Cas protein complexes, including types I, III, and IV, while Class II systems comprise single, multi-domain Cas proteins mediated by RNA, including types II (Cas9), V (Cas12), and VI (Cas13). Class II systems have been widely employed in the fields of biotechnology and nucleic acid diagnostics due to their efficient target binding and programmable RNA specificity. Currently, fluorescence method is the most common signal output technique in CRISPR/Cas-based biosensors. However, this method often requires the integration of signal amplification technologies to enhance sensitivity and involves expensive and complex fluorescence detectors. To enhance the detection performance of CRISPR/Cas-based biosensors, the integration of CRISPR/Cas with some alternative techniques can be considered. The CRISPR/Cas integrated electrochemical sensor (E-CRISPR) possesses advantages such as miniaturization, high sensitivity, high specificity, and fast response speed.E-CRISPR can convert the reactions between biomolecules and detecting components into electrical signals, rendering the detection signals more easily readable and reducing the impact of background values. Therefore,E-CRISPR enhances the accuracy of detection results. E-CRISPR has been applied in various fields, including medical and health, environmental monitoring, and food safety. Furthermore, E-CRISPR holds tremendous potential for advancing the detection levels of tumor markers.Among all types of Cas enzymes, the three most widely applied are Cas9, Cas12, and Cas13, along with their respective subtypes. In this work, we provided a brief overview of the principles and characteristics of Class II CRISPR/Cas single-effector proteins. This paper focused on the various detection technologies based on E-CRISPR technique, including electrochemical impedance spectroscopy, voltammetry, photoelectrochemistry, and electrochemiluminescence. We also emphasized the applications of E-CRISPR in the field of tumor diagnosis, which mainly encompasses the detection of three typical tumor markers (ctDNA, miRNA, and proteins). Finally, we discussed the advantages and limitations of E-CRISPR, current challenges, and future development prospects. In summary, althoughE-CRISPR platform has made significant strides in tumor detection, certain challenges still need to be overcome for their widespread clinical application. Continuous optimization of the E-CRISPR platform holds the promise of achieving more accurate tumor subtyping diagnoses in clinical settings, which would be of significant importance for early patient diagnosis and prognosis assessment.
10.The Role of TGF-β1/Smads Signaling Pathway in Anti-myocardial Fibrosis Effect of SIRT1 and Related Mechanism
Acta Medicinae Universitatis Scientiae et Technologiae Huazhong 2024;53(1):45-51
Objective To observe the effect of sirtuin 1(SIRT1)on rat myocardial fibrosis induced by pressure overload and the proliferation of cardiac fibroblasts induced by angiotensin Ⅱ(Ang Ⅱ),and to explore the molecular mechanisms.Methods The pressure overload-induced myocardial fibrosis was established by abdominal aorta constriction(AAC)procedure in vi-vo.After treatment with SIRT1 activator,the myocardial interstitial fibrosis and the collagen volume fraction were evaluated by Masson's trichrome staining.The protein expressions of TGF-β1/Smads were determined by immunohistochemical analy-sis.After in vitro intervention of Ang Ⅱ or Ang Ⅱ with SIRT1 activator,the fibroblasts proliferation was detected by MTT as-say.The mRNA and protein expressions of collagen Ⅰ/Ⅲ(Col1α1/3α1),SIRT1 and TGF-β1/Smads in myocardial tissue and fi-broblasts were evaluated by qRT-PCR and Western blotting.Results Compared with the sham operation group,myocardial in-terstitial fibrosis was significantly observed in the pressure overload model group,myocardial collagen volume fraction was in-creased,expressions of Col1α1/3α1 and TGF-β1/Smads were significantly increased,and SIRT1 expression was decreased.After the intervention of SRT1720,SIRT1 activator could improve the myocardial interstitial fibrosis induced by pressure overload,downregulate the expressions of Col1α1/3α1 and TGF-β1/Smads,and upregulate the expression of SIRT1.Meanwhile,correla-tion analysis showed that the protein expression of SIRT1 was negatively correlated with the expression of TGF-β1.In addition,SRT1720 also inhibited Ang Ⅱ-induced fibroblast proliferation and increased expression of Col1α1/3α1 and TGF-β1.Conclusion Activation of SIRT1 inhibits pressure overload-induced myocardial fibrosis and Ang Ⅱ-induced fibroblasts proliferation via regu-lation of the TGF-β1/Smads signaling pathway.


Result Analysis
Print
Save
E-mail