1.Spectrum-effect Relationship of Bupleuri Radix Processed with Trionyx sinensis Blood for Yin Deficiency Based on Saponins
Mengyu HOU ; Xia ZHAO ; Zhiyu GUO ; Ting LIU ; Yuexing MA ; Yaohui YE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):147-155
ObjectiveTo analyze the pharmacodynamic activity of Bupleuri Radix processed with Trionyx sinensis blood in the treatment of Yin deficiency and study the spectrum-effect relationship of this medicine. MethodsHigh performance liquid chromatography was employed to establish the fingerprints of 15 batches of Bupleuri Radix processed with Trionyx sinensis blood, and the similarity was evaluated according to the SOP of Similarity Evaluation System of Chromatographic Fingerprint of TCM (version 2012). A mouse model of Yin deficiency induced by thyroxine was established. The relationship between the active components and the effect on Yin deficiency was explored by grey correlation analysis and partial least squares method based on the changes in the serum levels of triiodothyronine (T3), thyroxine (T4), cyclic adenosine phosphate (cAMP), and cyclic guanosine phosphate (cGMP). The components screened out based on the spectrum-effect relationship were used for retrieval of the targets from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database (TCMSP), The Encyclopedia of Traditional Chinese Medicine (ETCM), and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Furthermore, the Online Mendelian Inheritance in Man (OMIM), GeneCards, TTD, DisGeNET, and Drugbank were employed to establish the active component-target against Yin deficiency network of Bupleuri Radix processed with Trionyx sinensis blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out for the core targets. Real-time PCR was conducted to verify the predicted key pathways and mechanisms. ResultsThe fingerprints of the 15 batches of Bupleuri Radix processed with Trionyx sinensis blood showed the similarities of 0.976-0.999 with the control fingerprint. Compared with the model group, the drug administration group showed elevated levels of T3 and T4 and lowered levels of cAMP, cGMP and cAMP/cGMP. The results of grey correlation analysis showed that active components in terms of the correlations followed the trend of saikosaponin B1 > saikosaponin B2 > saikosaponin C > saikosaponin D > saikosaponin A. The partial least squares analysis showed that saikosaponins A, D, B1, and B2 had higher VIP values. Network pharmacology predicted a total of 30 common targets, which were enriched in 276 GO terns and 115 KEGG pathways. The results of Real-time PCR showed that the model group had lower mRNA levels of Caspase-9, kinase insert domain receptor (KDR), and mammalian target of rapamycin (mTOR) and higher mRNA level of mouse double minute 2 homolog (MDM2) than the blank group and the drug administration group. ConclusionBupleuri Radix processed with Trionyx sinensis blood has therapeutic effect on Yin deficiency syndrome, which provides a new idea for studying Bupleuri Radix processed with Trionyx sinensis blood.
2.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
5.Mitochondrial Quality Control Regulating Pathogenesis of Sarcopenia and Its Intervention by Traditional Chinese Medicine: A Review
Ting DAI ; Yan CHEN ; Changsheng GUO ; Jing GAO ; Xiaodong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):279-286
Sarcopenia is a clinical syndrome characterized by a decrease in skeletal muscle strength and quality, often accompanied by adverse outcomes such as falls, loss of function and weakness. The pathogenesis of sarcopenia is complex, and studies have shown that dysfunction due to impaired mitochondrial quality control is an important pathological factor in the occurrence and development. Traditional Chinese medicine(TCM) has been widely favoured for regulating mitochondrial homeostasis and preventing sarcopenia by virtue of its multi-target and multi-pathway advantages. They can play a role in the prevention and treatment of sarcopenia by regulating the mitochondrial quality control system to inhibit the occurrence of mitochondrial oxidative stress, regulate the balance of mitochondrial dynamics, inhibit mitochondrial autophagy, promote mitochondrial biosynthesis, resist the occurrence of mitochondrial apoptosis, and maintain the mitochondrial calcium and protein homeostasis. Based on this, the paper reviewed the relationship between mitochondrial quality control and sarcopenia, as well as the mechanism of TCM in intervening the mitochondrial quality control system to treat sarcopenia, in order to provide a new idea for the prevention and treatment of sarcopenia by TCM and to a theoretical basis for the clinical research on TCM intervention in sarcopenia.
6.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
7.Mechanism of Huangqi Guizhi Wuwutang in Treatment of Sarcopenia Associated with Rheumatoid Arthritis by Improving Skeletal Muscle Homeostasis Through Regulation of Autophagy
Yakun WAN ; Yuan LIU ; Yuan QU ; Jingyu GUO ; Ting LIU ; Zhihui BAI ; Di ZHANG ; Ping JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):12-23
ObjectiveThis study aims to explore the mechanism of action of Huangqi Guizhi Wuwutang in treating rheumatoid arthritis (RA)-associated sarcopenia by regulating autophagy and improving skeletal muscle homeostasis based on network pharmacology,bioinformatics,machine learning,and animal experiments. MethodsActive ingredients and targets of Huangqi Guizhi Wuwutang were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),PubChem,and SwissTargetPrediction databases. RA-related datasets were retrieved from the GEO database,and differential genes were screened. Sarcopenia-related targets were searched through GeneCards and the Comparative Toxicology Database (CTD),and autophagy-related gene sets were downloaded from the Human Autophagy Database (HADb). Their intersection was analyzed to identify autophagy-related therapeutic targets,followed by enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database,and key targets were selected using multiple methods. Machine learning was applied to predict models based on the expression profiles of intersecting targets,and nomogram models were constructed based on key targets. Molecular docking of the top four active ingredients with key targets was performed using AutoDockVina. A collagen-induced arthritis (CIA) rat model was established using bovine type Ⅱ collagen,with SD rats divided into groups including a blank group,a model group,and low-,medium-,and high-dose groups of Huangqi Guizhi Wuwutang (2.44,4.88,and 9.76 g·kg-1) and administered for five consecutive weeks. Joint scores and gastrocnemius muscle mass were recorded and analyzed after modeling. Hematoxylin and eosin (HE) staining and Masson's staining were used to observe pathological changes in muscle tissue. Immunofluorescence staining was applied to observe the protein expression levels of myosin heavy chain (MYHC) and insulin-like growth factor-1 (IGF-1) in skeletal muscle. Western blot was used to detect the protein expression levels of autophagy-related proteins ATG5,Beclin1,LC3B,muscle-specific proteins (MuRF1),MaFbx,and MYHC. Real-time quantitative reverse transcription PCR (Real-time PCR) was performed to measure the mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,MaFbx,and MYHC in muscle tissue. ResultsNetwork pharmacology revealed that Huangqi Guizhi Wuwutang shared 25 common targets with autophagy genes related to RA-associated sarcopenia. The PPI network and machine learning identified six key targets,which were primarily involved in autophagy and inflammatory pathways. Animal experiments showed that compared to the blank group,the model group had significantly higher joint scores (P<0.01) and lower gastrocnemius muscle index (P<0.01). HE staining indicated a significant reduction in the cross-sectional area of gastrocnemius muscle fibers,with notable inflammatory cell infiltration and muscle atrophy in the model group. Masson's staining revealed obvious collagen fiber proliferation and deposition,with significant muscle fibrosis in the model group. The protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx were significantly increased (P<0.01),while the protein expression of MYHC and IGF1 was significantly downregulated (P<0.01). Compared with the model group,the high-dose group of Huangqi Guizhi Wuwutang showed significantly reduced protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx (P<0.01) and increased protein expression levels of MYHC and IGF1 (P<0.01). The cross-sectional area of muscle fibers increased,and the muscle cell morphology approached normal. Moreover,pathological abnormalities in the gastrocnemius muscle were significantly improved,with reduced collagen fiber proliferation (P<0.01). ConclusionHuangqi Guizhi Wuwutang can mediate autophagy by regulating the expression of ATG5,Beclin1,LC3B,and IGF1,thereby reducing skeletal muscle catabolism and improving skeletal muscle homeostasis,which contributes to the treatment of RA-associated sarcopenia. The findings provide insight into the mechanisms underlying the effects of Huangqi Guizhi Wuwutang in the treatment of RA-related sarcopenia and offer a reference for its enhanced clinical application.
8.Association of sleep quality with overweight and obesity among middle school students
Chinese Journal of School Health 2025;46(6):779-782
Objective:
To explore relationship of sleep quality with overweight and obesity among middle school students, so as to provide a reference basis for improving adolescent sleep health.
Methods:
From September to December 2023, 5 713 middle school students aged 13 to 18 were selected by stratified cluster random sampling method in six regions, including Shanghai, Suzhou, Taiyuan, Wuyuan, Xingyi and Urumqi. Sleep quality survey was conducted on middle school students by Pittsburgh Sleep Quality Index. Height and weight were measured, and World Health Organization s standards for growth and development of children and adolescents was used to evaluate their nutritional status. Both χ 2 test and Logistic regression analysis were used to analyze the association between sleep quality and nutritional status of middle school students.
Results:
The non compliance detection rate of sleep quality was 38.4% among girls, but 29.2% among boys, and the difference was of statistical significance( χ 2=54.08, P < 0.01 ). The detection rate of substandard sleep quality was 34.2% in the group with normal nutritional status, 38.3% in the group with overweight, 43.7% in the group with obesity and 26.0% in the group with emaciation, and the difference in the rates of substandard sleep quality among middle school students of different nutritional status was statistically significant ( χ 2=68.15, P <0.01). Logistic regression analysis showed that, after controlling for mental health and physical activity, the detection rate of substandard sleep quality in the obese groups was 1.30 times higher than that in the normal group, respectively( OR =1.30, 95% CI =1.06- 1.59 , P <0.01).
Conclusions
Sleep quality is correlated with overweight and obesity among middle school students, and there are gender differences. Intervention policies should be formulated according to the characteristics of different genders.
9.Association between physical activity and sleep quality among middle school students
LIU Yuan, ZHANG Ting,YIN Xiaojian, WU Huipan, WANG Jinxian, ZHANG Yingkun, GUO Yaru
Chinese Journal of School Health 2025;46(6):783-787
Objective:
To explore the association between physical activity and sleep quality among middle school students, so as to provide reference for adolescent sleep improvement.
Methods:
From September to December 2023, 5 713 middle school students aged 13-18 years were selected from Shanghai, Suzhou, Taiyuan, Wuyuan, Xingyi and Urumqi by stratified cluster random sampling method. Pittsburgh Sleep Quality Index (PSQI) and Evaluation of Physical Activity Levels of Children and Adolescents Aged 7-18 Years were used to investigate and evaluate sleep quality and physical activity. Comparisons between groups were made using the t-test, Mann-Whitney U-test, and associations between physical activity and sleep quality of middle school students were analyzed using Spearman correlation and linear regression methods.
Results:
The total PSQI scores were 4.0(2.0,6.0) and 5.0 (3.0,6.0) for boys and girls, respectively, with significant sex difference ( Z =-10.90, P <0.01); light physical activity(LPA) and moderate to vigorous physical activity(MVPA) of boys were 18.57 (2.86, 42.86) and 68.57 (35.71, 119.18)min, and girls were 14.29 (0.00, 30.00) and 55.71 (31.43, 92.86)min respectively, and the differences were statistically significant ( Z =3.65, -8.65 , P <0.01). The results of Spearman correlation regression showed that adolescents MVPA was negatively correlated with the total PSQI score ( r =-0.04, P <0.01). After controlling for variables such as mental health, nutritional status and maximum oxygen uptake, the results of linear regression analysis showed that PSQI total score negatively predicted MVPA among middle school students ( B =-4.76, 95% CI =-7.16 to -2.36, P <0.05).
Conclusion
The longer the duration of physical activity among middle school students, the better the quality of sleep.
10.Adolescent anxiety and non-suicidal self-injury behavior: the mediating role of depression and the moderating role of social support
Juexi LI ; Liyuan LI ; Yuxuan GUO ; Xiaoqiang XIAO ; Peiqi TANG ; Ting PU ; Haixi ZUO ; Ting YANG ; Xiaoxia FAN ; Bo ZHOU
Sichuan Mental Health 2025;38(4):357-363
BackgroundNon-suicidal self-injury (NSSI) behavior among adolescents has become a global public health concern. Anxiety and depression are considered key factors influencing NSSI behavior, while social support may play a protective role in alleviating emotional and behavioral issues. However, existing research has primarily focused on the direct impact of individual factors on NSSI behavior, with insufficient exploration of the combined effects of anxiety, depression and social support. ObjectiveTo investigate the direct effect of anxiety on NSSI, the mediating role of depression and the moderating role of social support in relationship between anxiety and NSSI behavior, thus to provide references for the prevention and intervention of NSSI behavior among adolescents. MethodsIn February 2022, a total of 40 820 students in grades 7 to 12 across 10 middle schools in a district of Chengdu were selected as participants, and they were assessed using Generalized Anxiety Disorder Scale-7 item (GAD-7), Patient's Health Questionnaire Depression Scale-9 item (PHQ-9), Social Support Scale for Urban Students (SSSUS) and Adolescent Self-Harm Scale (ASHS). Pearson correlation analysis was conducted to examine the correlations between scale scores among adolescents with NSSI behaviors. Mediation and moderation analyses were performed using Process 3.5 in SPSS, and the significance was tested with bootstrapping. The interaction was visualized by using simple slope analysis. ResultsAmong 34 534 (84.60%) valid respondents, 542 adolescents (1.57%) reported engaging in NSSI behavior. Significant differences in gender, GAD-7 scores, PHQ-9 scores, and SSSUS scores were observed between NSSI behavior group and non-NSSI group (χ²/t=62.889, 71.120, 94.365, -41.464, P<0.01).Adolesents with NSSI showed positive correlations between GAD-7 scores and both ASHS and PHQ-9 scores (r=0.158, 0.166, P<0.01). PHQ-9 scores were positively correlated with ASHS scores (r=0.364, P<0.01), but negatively correlated with SSSUS scores (r=-0.290, P<0.01). SSSUS scores were negatively correlated with ASHS scores (r=-0.247, P<0.01). Depression partially mediated the relationship between anxiety and NSSI behavior, with an effect size of 0.544 (95% CI: 0.162~0.944), accounting for 35.79% of the total effect. Social support moderated the relationship between depression and NSSI bahavior, with an effect value of -0.082 (95% CI: -0.135~-0.029). ConclusionAnxiety not only directly influences NSSI bahavior among adolescents, also indirectly exacerbates it through depression, while social support mitigates the impact of depression on NSSI behavior. [Funded by Youth Project of National Natural Science Foundation of China (number, 82401812); Project of Health Commission of Sichuan Province (number, 24LCYJPT18)]


Result Analysis
Print
Save
E-mail