1.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
		                        		
		                        			 OBJECTIVE:
		                        			Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. 
		                        		
		                        			RESULTS:
		                        			PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. 
		                        		
		                        			CONCLUSION
		                        			Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds. 
		                        		
		                        		
		                        		
		                        	
2.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
		                        		
		                        			 OBJECTIVE:
		                        			Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. 
		                        		
		                        			RESULTS:
		                        			PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. 
		                        		
		                        			CONCLUSION
		                        			Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds. 
		                        		
		                        		
		                        		
		                        	
3.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
		                        		
		                        			 OBJECTIVE:
		                        			Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. 
		                        		
		                        			RESULTS:
		                        			PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. 
		                        		
		                        			CONCLUSION
		                        			Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds. 
		                        		
		                        		
		                        		
		                        	
4.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
		                        		
		                        			 OBJECTIVE:
		                        			Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. 
		                        		
		                        			RESULTS:
		                        			PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. 
		                        		
		                        			CONCLUSION
		                        			Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds. 
		                        		
		                        		
		                        		
		                        	
5.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
		                        		
		                        			 OBJECTIVE:
		                        			Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. 
		                        		
		                        			RESULTS:
		                        			PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. 
		                        		
		                        			CONCLUSION
		                        			Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds. 
		                        		
		                        		
		                        		
		                        	
7.Panaxdiol Saponins Component Promotes Hematopoiesis and Modulates T Lymphocyte Dysregulation in Aplastic Anemia Model Mice.
Zhi-Yin ZHENG ; Xiao-Ling YU ; Tie-Ying DAI ; Li-Ming YIN ; Yan-Na ZHAO ; Min XU ; Hai-Feng ZHUANG ; Beng Hock CHONG ; Rui-Lan GAO
Chinese journal of integrative medicine 2019;25(12):902-910
		                        		
		                        			OBJECTIVE:
		                        			To investigate the potential efficacy of panaxadiol saponins component (PDS-C) in the treatment of aplastic anemia (AA) model mice.
		                        		
		                        			METHODS:
		                        			Totally 70 mice were divided into 7 groups as follows: normal, model, low-, medium-, high-dose PDS-C (20, 40, 80 mg/kg, namely L-, M-, H-PDS-C), cyclosporine (40 mg/kg), and andriol (25 mg/kg) groups, respectively. An immune-mediated AA mouse model was established in BALB/c mice by exposing to 5.0 Gy total body irradiation at 1.0 Gy/min, and injecting with lymphocytes from DBA mice. On day 4 after establishment of AA model, all drugs were intragastrically administered daily for 15 days, respectively, while the mice in the normal and model groups were administered with saline solution. After treatment, the peripheral blood counts, bone marrow pathological examination, colony forming assay of bone marrow culture, T lymphocyte subpopulation analysis, as well as T-bet, GATA-3 and FoxP3 proteins were detected by flow cytometry and Western blot.
		                        		
		                        			RESULTS:
		                        			The peripheral blood of white blood cell (WBC), platelet, neutrophil counts and hemoglobin (Hb) concentration were significantly decreased in the model group compared with the normal group (all P<0.01). In response to 3 dose PDS-C treatment, the WBC, platelet, neutrophil counts were significantly increased at a dose-dependent manner compared with the model group (all P<0.01). The myelosuppression status of AA was significantly reduced in M-, H-PDS-C groups, and hematopoietic cell quantity of bone marrow was more abundant than the model group. The colony numbers of myeloid, erythroid and megakaryocytic progenitor cells in the model group were less than those of the normal mice in bone marrow culture, while, PDS-C therapy enhanced proliferation of hematopoietic progenitor cells by significantly increasing colony numbers (all P<0.01). Furthermore, PDS-C therapy increased peripheral blood CD3 and CD3CD4 cells and reduced CD3CD8 cells (P<0.05 or P<0.01). Meanwhile, PDS-C treatment at medium- and high doses groups also increased CD4CD25FoxP3 cells, downregulated T-bet protein expression, and upregulated GATA-3 and FoxP3 protein expressions in spleen cells (P<0.05).
		                        		
		                        			CONCLUSION
		                        			PDS-C possesses dual activities, promoting proliferation hematopoietic progenitor cells and modulating T lymphocyte immune functions in the treatment of AA model mice.
		                        		
		                        		
		                        		
		                        	
8.Effect of hydrogen molecule on apoptosis-related proteins and Nrf2 signa-ling pathway in glomerular mesangial cells cultured with high glucose
Yin-Ping LI ; Xue-Ming ZHANG ; Kai-Cheng WANG ; Lei YING ; Yang WANG ; Wan-Tie WANG ; Ke-Ke JIN
Chinese Journal of Pathophysiology 2018;34(1):29-34
		                        		
		                        			
		                        			AIM:To investigate the role of hydrogen molecule on apoptosis-related proteins in glomerular me-sangial cells cultured with high glucose and to explore its possible mechanism.METHODS:Mouse glomerular mesangial cells cultured in vitro were divided into 4 groups:normal control group(C group,5.5 mmol/L glucose),mannitol group(G group,5.5 mmol/L glucose+19.5 mmol/L mannitol),high glucose group(H group,25 mmol/L glucose),high glu-cose+hydrogen-rich water group(HH group,25 mmol/L glucose+hydrogen-rich water),and cultured for 48 h.The pro-tein levels of Bax,Bcl-2,cleaved caspase-3,nuclear factor E2-related factor-2(Nrf2),heme oxygenase-1(HO-1)and NAD(P)H:quinone oxidoreductase-1(NQO-1)were determined by Western blot ,and the mRNA expression of HO-1 and NQO-1 was determined by RT-PCR.The level of intracellular reactive oxygen species(ROS)was detected by dihydro-ethidium method,and the activity of superoxide dismutase(SOD)was measured by WST-8 assay.RESULTS:Compared with C group,the protein levels of Bax and cleaved caspase-3 were up-regulated,and Bcl-2 was down-regulated in H group(P <0.05).No significantly difference of the protein levels mentioned above between C and HH group was observed. Compared with H group,the protein levels of Bax and cleaved caspase-3 were down-regulated,and Bcl-2 was up-regulated in HH group(P <0.05).The level of intracellular ROS was higher and the activity of SOD was lower in H group than those in C group(P<0.05).However,there was no difference of the SOD activity between C group and HH group.The level of intracellular ROS decreased and the activity of SOD increased in HH group as compared with H group(P<0.05). Compared with C group,clearly reduced protein expression of Nrf2,HO-1 and NQO-1,and decreased mRNA expression of HO-1 and NQO-1 in H group were observed(P<0.05).Compared with H group,the protein levels of Nrf2,HO-1 and NQO-1 as well as the mRNA levels of HO-1 and NQO-1 were obviously increased in HH group(P<0.05 ).CONCLU-SION:Hydrogen molecule inhibits the expression of pro-apoptotic proteins and induces the expression of anti-apoptotic pro-teins in glomerular mesangial cells cultured with high glucose.The mechanism may be related to activation of Nrf 2 signaling pathway.
		                        		
		                        		
		                        		
		                        	
9.Impact of premature rupture of membranes on neonatal complications in preterm infants with gestational age <37 weeks.
Shun-Yan DUAN ; Xiang-Yong KONG ; Feng-Dan XU ; Hong-Yan LV ; Rong JU ; Zhan-Kui LI ; Shu-Juan ZENG ; Hui WU ; Xue-Feng ZHANG ; Wei-Peng LIU ; Fang LIU ; Hong-Bin CHENG ; Yan-Jie DING ; Tie-Qiang CHEN ; Ping XU ; Li-Hong YANG ; Su-Jing WU ; Jin WANG ; Li PENG ; Xiao-Lin ZHAO ; Hui-Xian QIU ; Wei-Xi WEN ; Ying LI ; Lan LI ; Zheng WEN ; Guo GUO ; Feng WANG ; Gai-Mei LI ; Wei LI ; Xiao-Ying ZHAO ; Yun-Bo XU ; Wen-Chao CHEN ; Huan YIN ; Xiao-Liang WANG ; Rui-Yan SHAN ; Mei-Ying HAN ; Chun-Yan YANG ; Zhi-Chun FENG
Journal of Southern Medical University 2016;36(7):887-891
OBJECTIVETo investigate the effect of premature rupture of the membrane (PROM) on neonatal complications in premature infants.
METHODSThe registration information of 7684 preterm infants with gestational age <37 weeks were collected from the cooperative units in the task group between January 1, 2014 to December 31, 2014. Specially trained personnel from each cooperative units filled in the unified form in a standardized format to record the gender, gestational age, birth weight, PROM, placental abruption, antenatal corticosteroid, Apgar score, amniotic fluid pollution, and complications of the infants. The data were analyzed comparatively between the cases with PROM and those without (control).
RESULTSThe preterm mortality rate was significantly lower but the incidences of ICH, NEC, ROP and BPD were significantly higher in PROM group than in the control group (P<0.05). The 95% confidence interval of the OR value was <1 for mortality, and was >1 for ICH, NEC, ROP and BPD. After adjustment for gestational age, birth weight, gender, mode of delivery, placental abruption, placenta previa, prenatal hormones, gestational diabetes mellitus (GDM), gestational period hypertension and 5-min Apgar score <7, the incidences of NEC, ROP and BPD were significantly different between the two groups (P<0.05) with 95% confidence interval of OR value >1, but the mortality rate and incidence of ICH were not significantly different between the two groups (P>0.05).
CONCLUSIONPROM is a risk factor for NEC, ROP and BPD in preterm infants, and adequate intervention of PROM can reduce the incidences of such complications as NEC, ROP and BPD in the infants.
Apgar Score ; Birth Weight ; Female ; Fetal Membranes, Premature Rupture ; pathology ; Gestational Age ; Humans ; Incidence ; Infant, Newborn ; Infant, Newborn, Diseases ; etiology ; Infant, Premature ; Pregnancy ; Risk Factors
10.Dynamic changes of IL-1β in rat myocardium during hypoxia/ reoxygenation transition.
Jin-bo HE ; Cai-ying BAO ; Yu-zhu YE ; Zi-yin LUO ; Lei YING ; Wan-tie WANG
Chinese Journal of Applied Physiology 2015;31(1):27-30
OBJECTIVETo investigate the expression profile of interleuki-1β (IL-1β) in rat myocardium at different time points during hypoxia/reoxygenation(H/R)transition.
METHODSThe isolated Langendorff perfused rat heart model was established.Forty SD rats were randomly divided into sham group (A group) and hypoxia/reoxygenation group (H/R group). The H/R group rats were subdivided into H/R 0.5 h group(B group), H/R 1 h group(C group), H/R 2 h group(D group)according to reoxygenation time. The left ventricular development pressure(LVDP), maximal rates of increase/decrease of the left ventricular pressure(±dp/dtmax) were continuously recorded. The concentration of interleukin-1β(IL-lβ) and creatine kinase-MB (CK-MB) in myocardium was measured by ELISA. The mRNA expression of IL-lβ in myocardium was determined by RT-PCR. Microstructure of myocardium was observed under light microscopy.
RESULTSThe value of LVDP and ±dp/dtmax in hypoxia/reoxygenation group rat were significantly lower than that in sham group(P < 0.05). The expression of IL-lβ and CK-MB at protein level and the expression of IL-1β at mRNA level in hypoxia /reoxygenation group were higher than that in sham group(P < 0. 05). There were significant differences of the above parameters among H/R 0.5 h, 1 h, 2 h group(P <0.05). The concentration of IL-1β and CK-MB, the mRNA expression of IL-1β were higher in H/R 2 h group than that of other groups(P < 0.05).
CONCLUSIONThe high expression of IL-Iβ in myocardium after myocardial hypoxia /reoxygenation in rats might lead to. ischemia/reperfusion injury.
Animals ; Creatine Kinase, MB Form ; metabolism ; Disease Models, Animal ; Hypoxia ; metabolism ; pathology ; Interleukin-1beta ; metabolism ; Myocardial Ischemia ; metabolism ; Myocardium ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley
            
Result Analysis
Print
Save
E-mail