1.Current Research and Development of Antigenic Epitope Prediction Tools
Zi-Hao LI ; Yuan WANG ; Tian-Tian MAO ; Zhi-Wei CAO ; Tian-Yi QIU
Progress in Biochemistry and Biophysics 2024;51(10):2532-2544
Adaptive immunity is a critical component of the human immune system, playing an essential role in identifying antigens and orchestrating a tailored immune response. This review delves into the significant strides made in the development of epitope prediction tools, their integration into vaccine design, and their pivotal role in enhancing immunotherapy strategies. The review emphasizes the transformative potential of these tools in refining our understanding and application of immune responses. Adaptive immunity distinguishes itself from innate immunity by its ability to recognize specific antigens and remember past infections, leading to quicker and more effective responses upon subsequent exposures. This facet of immunity involves complex interactions between various cell types, primarily B cells and T cells, which recognize distinct epitopes presented by antigens. Epitopes are small sequences or configurations on antigens that are recognized by the immune receptors on B cells and T cells, acting as the focal points of immune recognition and response. Epitopes can be broadly classified into two types: linear (or sequential) epitopes and conformational (or discontinuous) epitopes. Linear epitopes consist of a sequence of amino acids in a protein that are recognized by B cells and T cells in their primary structure form. Conformational epitopes, on the other hand, are formed by spatially distinct amino acids that come together in the tertiary structure of the protein, often recognized by the immune system only when the protein folds into its native conformation. The role of epitopes in the immune response is critical as they are the primary triggers for the activation of B cells and T cells. When an epitope is recognized, it can stimulate B cells to produce antibodies, mobilize helper T cells to secrete cytokines, or prompt cytotoxic T cells to kill infected cells. These actions form the basis of the adaptive immune response, tailored to eliminate specific pathogens or infected cells effectively. The prediction of B cell and T cell epitopes has evolved with advances in computational biology, leading to the development of several sophisticated tools that utilize a variety of algorithms to predict the likelihood of epitope regions on antigens. Tools employing machine learning methods, such as support vector machines (SVMs), XGBoost, random forest, analyze large datasets of known epitopes to classify new sequences as potential epitopes based on their similarity to known data. Moreover, deep learning has emerged as a powerful method in epitope prediction, leveraging neural networks capable of learning high-dimensional data from vast amounts of immunological inputs to identify patterns that may not be evident to other predictive models. Deep learning models, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and ESM protein language model have demonstrated superior accuracy in mapping the nonlinear relationships inherent in protein structures and epitope interactions. The application of epitope prediction tools in vaccine design is transformative, enabling the development of epitope-based vaccines that can elicit targeted immune responses against specific parts of the pathogen. These vaccines, by focusing the immune response on highly specific regions of the pathogen, can offer high efficacy and reduced side effects. Similarly, in cancer immunotherapy, epitope prediction tools help identify tumor-specific antigens that can be targeted to develop personalized immunotherapeutic strategies, thereby enhancing the precision of cancer treatments. The future of epitope prediction technology appears promising, with ongoing advancements anticipated to enhance the precision and efficiency of these tools further. The integration of broader immunological data, such as patient-specific immune profiles and pathogen variability, along with advances in AI and machine learning, will likely drive the development of more adaptive, robust, and clinically relevant prediction models. This will not only improve the effectiveness of vaccines and immunotherapies but also contribute to our broader understanding of immune mechanisms, potentially leading to breakthroughs in the treatment and prevention of multiple diseases. In conclusion, the development and refinement of epitope prediction tools stand as a cornerstone in the advancement of immunological research and therapeutic design, highlighting a path toward more precise and personalized medicine. The ongoing integration of computational models with experimental immunology holds the promise of revolutionizing our approach to combating infectious diseases and cancer.
2.Efficacy and safety of autologous hematopoietic stem cell transplantation pretreated with Melphalan hydrochloride for injection in the treatment of 125 cases of multiple myeloma.
Wen Yang HUANG ; Wei LIU ; Hui Min LIU ; Yan XU ; Qi WANG ; Chen Xing DU ; Wen Jie XIONG ; Wei Wei SUI ; Fei TIAN ; Jing WANG ; Shu Hua YI ; Gang AN ; Lu Gui QIU ; De Hui ZOU
Chinese Journal of Hematology 2023;44(2):148-150
3.Association of greenness exposure with waist circumference and central obesity in Chinese adults aged 65 years and over.
Li Hong YE ; Jin Hui ZHOU ; Yan Lin TIAN ; Si Xin LIU ; Jun Xin LIU ; Jia Ming YE ; Jia CUI ; Chen CHEN ; Jun WANG ; Bing WU ; Yi Qi QIU ; Yuan WEI ; Yi Dan QIU ; Xu Lin ZHENG ; Li QI ; Yue Bin LV ; Juan ZHANG
Chinese Journal of Preventive Medicine 2023;57():86-92
Objective: To examine the association of greenness exposure with waist circumference (WC) and central obesity in older adults in China. Methods: Based on the cross-sectional data from the Chinese Longitudinal Healthy Longevity Survey in 2017-2018, 14 056 participants aged 65 years and over were included. Demographic characteristics, lifestyle, WC, and other information were collected through a questionnaire and physical examination. Based on the satellite monitoring data of moderate-resolution imaging spectroradiometer (MODIS) provided by NASA, the annual mean of normalized difference vegetation index (NDVI) within a radius of 1 000 meters was obtained as the measurement value of greenness exposure. Multivariate linear regression model, multivariate logistic regression model, and restricted cubic splines (RCS) model were used to analyze the association and dose-response relationship between greenness exposure and WC and central obesity in older adults in China. Results: A total of 14 056 participants were enrolled with a median age of 84.0 years [IQR: 75.0-94.0 years]. About 45.0% (6 330) of them were male and 48.6% (5 853) were illiterate. There were 10 964 (78.0%) participants from rural. The mean of WC was (84.4±10.8) cm. Central obesity accounted for 60.2% (8 465), and the NDVI range was (-0.06, 0.78). After adjusting for confounding factors, the multivariate linear regression model showed that the change value of WC in the urban group [β (95%CI):-0.49 (-0.93, -0.06)] was smaller than that in the rural [-0.78 (-0.98, -0.58)] for every 0.1 unit increase in NDVI (Pinteraction=0.022). Compared with the Q1 group in NDVI, WC of Q2 and Q3 groups in rural decreased, and the β (95%CI) values were-1.74 (-2.5, -0.98) and-2.78 (-3.55, -2.00), respectively. The multivariate logistic regression model showed that after adjusting for confounding factors, the risk of central obesity decreased for urban and rural older adults with an increase of 0.1 unit in NDVI, and the OR (95%CI) values were 0.87 (0.80, 0.95) and 0.86 (0.82, 0.89), respectively (Pinteraction=0.284). Compared with the Q1 group in NDVI, the risk of central obesity in the Q2 and Q3 groups in rural was lower, and the OR (95%CI) values were 0.68 (0.58, 0.80) and 0.57 (0.49, 0.68), respectively. The results of the multivariate regression model with RCS showed that there was a non-linear association of NDVI with WC (Pnonlinear=0.006) and central obesity (Pnonlinear=0.025). Conclusion: Greenness exposure is negatively associated with WC and central obesity in older adults in China.
4.Application and problems analysis of traditional Chinese medicine volatile oil preparation technology based on ionic liquids.
Yi-Qin YANG ; Yi WU ; Yi-Feng WU ; Na WAN ; Yu-Tian ZHANG ; Ming YANG ; Yong-Wei QIU ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2023;48(5):1194-1202
Ionic liquids(ILs) are salts composed entirely of anions and cations in a liquid state at or near room temperature, which have a variety of good physicochemical properties such as low volatility and high stability. This paper mainly reviewed the research overview of ILs in the application of traditional Chinese medicine(TCM) volatile oil preparation technology. Firstly, it briefly introduced the application of TCM volatile oil preparation technology and composition classification and physicochemical properties of ILs, and then summarized the application of ILs in the extraction, separation, analysis, and preparation of TCM volatile oil. Finally, the problems and challenges of ILs in the application of TCM volatile oil were explained, and the application of ILs in TCM volatile oil in the future was prospected.
Ionic Liquids/chemistry*
;
Oils, Volatile/analysis*
;
Medicine, Chinese Traditional
;
Cations
;
Biological Products
;
Technology
6.The mechanism of modified Gan Cao Fu Zi Decoction in the treatment of rheumatoid arthritis based on network pharmacology and experimental validation
Tian-yu WU ; Ming ZHANG ; Xiao-yu HE ; Yan ZHANG ; Tian XIA ; Yi-qing YANG ; Cheng-zhi TANG ; Yong-jie CHEN ; Zi-xia DING ; Li-qiu CHEN ; Xiao-nan ZHANG
Acta Pharmaceutica Sinica 2023;58(6):1441-1451
We used network pharmacology to predict the mechanism in the treatment of rheumatoid arthritis (RA)
7.Inhibitory effect and molecular mechanism of sinomenine on human hepatocellular carcinoma HepG2 and SK-HEP-1 cells.
Ying-Ying TIAN ; Bei-Bei MA ; Xin-Yue ZHAO ; Chuang LIU ; Yi-Lin LI ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ying-Nan LYU ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(17):4702-4710
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Liver Neoplasms/genetics*
;
Molecular Docking Simulation
;
Sincalide/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Hep G2 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
8.Morin induces autophagy and apoptosis in hepatocellular carcinoma cells through Akt/mTOR/STAT3 pathway.
Xin-Yue ZHAO ; Ying-Ying TIAN ; Chuang LIU ; Yi-Lin LI ; Ying-Nan LYU ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(16):4475-4482
This study investigated the effect and mechanism of morin in inducing autophagy and apoptosis in hepatocellular carcinoma cells through the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription protein 3(STAT3) pathway. Human hepatocellular carcinoma SK-HEP-1 cells were stimulated with different concentrations of morin(0, 50, 100, 125, 200, and 250 μmol·L~(-1)). The effect of morin on the viability of SK-HEP-1 cells was detected by Cell Counting Kit-8(CCK-8). The effect of morin on the proliferation and apoptosis of SK-HEP-1 cells was investigated using colony formation assay, flow cytometry, and BeyoClick~(TM) EdU-488 with different concentrations of morin(0, 125, and 250 μmol·L~(-1)). The changes in the autophagy level of cells treated with morin were examined by transmission electron microscopy and autophagy inhibitors. The impact of morin on the expression levels of proteins related to the Akt/mTOR/STAT3 pathway was verified by Western blot. Compared with the control group, the morin groups showed decreased viability of SK-HEP-1 cells in a time-and concentration-dependent manner, increased number of apoptotic cells, up-regulated expression level of apoptosis marker PARP, up-regulated phosphorylation level of apoptosis-regulating protein H2AX, decreased number of positive cells and the colony formation rate, an upward trend of expression levels of autophagy-related proteins LC3-Ⅱ, Atg5, and Atg7, and decreased phosphorylation levels of Akt, mTOR, and STAT3. These results suggest that morin can promote apoptosis, inhibit proliferation, and induce autophagy in hepatocellular carcinoma cells, and its mechanism of action may be related to the Akt/mTOR/STAT3 pathway.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Autophagy
;
Cell Proliferation
;
Cell Line, Tumor
;
STAT3 Transcription Factor/metabolism*
9.Analysis of red blood cells supply before and after the outbreak of COVID-19 from 2018 to 2021 in 18 domestic blood centers
Dongyan ZHAO ; Hongwei MA ; Dingjie TANG ; Xiaorong FENG ; Hao TIAN ; Mengzhuo LUO ; Nan WU ; Yan LIN ; Xia DU ; Qi FU ; Junlei HUANG ; Changchun LU ; Xiaoli CAO ; Yi YANG ; Lin WANG ; Ying LI ; Hai QI ; Dongtai WANG ; Yan QIU
Chinese Journal of Blood Transfusion 2023;36(10):892-898
【Objective】 To compare the supply data of red blood cells(RBCs) from 18 blood centers in China before and after the outbreak of COVID-19 during 2018 to 2021. 【Methods】 Eight indicators related to RBCs supply from 18 blood centers in China during 2018-2021 were collected retrospectively, including the storage of total amount of qualified RBCs (referred to as the total amount of storage), the distribution of total amount of RBCs (referred to as the total amount of distribution), the distribution amount of RBCs per 1 000 population (referred to as the amount of distribution per 1 000 population), the distribution amount of RBCs from 400 mL original blood per 1 000 population [referred to as the amount of distribution per 1 000 population (400 mL)], the average daily distribution amount of RBCs (referred to as the average daily distribution amount), the average daily storage amount of RBCs (referred to as the average daily storage amount), the average storage days of RBCs when distribute (referred to as the RBC storage days), and the expired amount of RBCs (referred to as the expired amount). Based on the outbreak time of COVID-19, the data of 2018 and 2019 were the pre-pandemic group, and the data of 2020 and 2021 were the post-pandemic group. 【Results】 Data on RBCs supply in 18 blood centers from 2018 to 2021(comparison of the pre-pandemic group and the post-pandemic group): the amount of distribution per 1 000 population (median 14.68 U>13.92 U) decreased, the amount of distribution per 1 000 population (400 mL) (median 10.16 U>9.21 U) decreased, and the difference was statistically significant (P<0.05); data comparison between 2019 and 2020:the total amount of distribution (median 117 770.38 U>99 084.08 U) decreased, the amount of distribution per 1 000 population (median 15.04 U>12.19 U) decreased, the amount of distribution per 1000 population (400 mL) (median 10.11 U>8.94 U), the average daily distribution amount(322.66 U>270.73 U) decreased and RBC storage days (median 10.50 d<11.45 d) increased, the difference has statistical significance (P<0.05); data comparison between 2020 and 2021:the total amount of storage (median 101 920.25 U<120 328.63 U), the total amount of distribution (median 99 084.08 U<118 428.62 U), the amount of distribution per 1 000 population (median 12.19 U<15.00 U), the amount of distribution per 1 000 population (400 mL) (median 8.94 U<9.46 U), the average daily distribution amount (270.73 U>324.46 U), the average daily inventory (median 3 222.00 U<4 328.00 U) increased, the expired amount (median 1.50 U>0.00 U) decreased, the difference has statistical significance (P<0.05). The results of ANOVA showed that there were significant differences on the data related to RBCs supply (except expired amount) in different blood centers (P<0.05). The ratio of average daily stock to average daily distribution in the post-outbreak group (median 12.36 d) was higher than that in the pre-outbreak group (median 10.92 d), the difference has statistical significance (P<0.05), with significant difference among different blood centers (P <0.05). 【Conclusion】 The COVID-19 pandemic has a significant impact on RBCs supply in different blood centers. In the second year of the pandemic, the supply capability had recovered to some extent, and there were differences in RBCs supply in different blood centers.
10.Triaging patients in the outbreak of COVID-2019
Guo-Qing HUANG ; Wei-Qian ZENG ; Wen-Bo WANG ; Yan-Min SONG ; Xiao-Ye MO ; Jia LI ; Ping WU ; Ruo-Long WANG ; Fang-Yi ZHOU ; Jing WU ; Bin YI ; Zeng XIONG ; Lu ZHOU ; Fan-Qi WANG ; Yang-Jing TIAN ; Wen-Bao HU ; Xia XU ; Kai YUAN ; Xiang-Min LI ; Xin-Jian QIU ; Jian QIU ; Ai-Min WANG
Chinese Journal of Infection Control 2023;22(3):295-303
In the outbreak of COVID-19,triage procedures based on epidemiology were implemented in a local hospital in Changsha to control the transmission of SARS-CoV-2 and avoid healthcare-associated infection.This re-trospective study analyzed the data collected during the triage period and found that COVID-19 patients were en-riched 7 folds into the Section A designated for patients with obvious epidemiological history.On the other side,nearly triple amounts of visits were received at the Section B for patients without obvious epidemiological history.8 COVID-19 cases were spotted out of 247 suspected patients.More than 50%of the suspected patients were submi-tted to multiple rounds of nucleic acid analysis for SARS-CoV-2 infection.Of the 239 patients who were diagnosed as negative of the virus infection,188 were successfully revisited and none was reported as COVID-19 case.Of the 8 COVID-19 patients,3 were confirmed only after multiple rounds of nucleic acid analysis.Besides comorbidities,delayed sharing of epidemiological history added complexity to the diagnosis in practice.The triaging experience and strategy will be helpful for the control of infectious diseases in the future.

Result Analysis
Print
Save
E-mail