1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
		                				6.Cloning and gene functional analysis study of dynamin-related protein GeDRP1E  gene in Gastrodia elata 
		                			
		                			Xin FAN ; Jian-hao ZHAO ; Yu-chao CHEN ; Zhong-yi HUA ; Tian-rui LIU ; Yu-yang ZHAO ; Yuan YUAN
Acta Pharmaceutica Sinica 2024;59(2):482-488
		                        		
		                        			
		                        			 The gene 
		                        		
		                        	
7.Early clinical efficacy study on the efficacy of a three-stage conservative Chinese medicine external treatment for a-cute lateral ankle ligament injuries
Qing-Xin HAN ; Lei ZHANG ; Jun-Ying WU ; Xiao-Hua LIU ; Yan LI ; Tian-Xin CHEN ; Yu YI ; Mei-Qi YU
China Journal of Orthopaedics and Traumatology 2024;37(10):997-1002
		                        		
		                        			
		                        			Objective To evaluate the clinical effect of a new three-phase Chinese medicine(CM)external treatment for acute lateral ankle ligament injuries.Methods From July to December 2023,64 patients with acute lateral ankle ligament in-juries were randomly assigned to receive either the new three-phase CM external treatment combined with the POLICE(pro-tect,optimal loading,ice,compression,elevation)treatment(observation group)or the POLICE treatment(control group),with 32 cases in each group.The observation group consisted of 17 males and 15 females,with an average age of(30.59±3.10)years old ranging from 25 to 36 years old,while the control group included 14 males and 18 females,with an average age of(30.03±3.19)years old ranging from 24 to 37 years old.Visual analogue scale(VAS)evaluation and Figure of 8 measurement were used to evaluate the degree of ankle joint pain and swelling of the subjects at the initial enrollment and after 1 week and sixth weeks of treatment.At the same time,the American Orthopaedic Foot and Ankle Society(AOFAS)and Karlsson Ankle Function Score System were used to evaluate the improvement of ankle joint function in patients at all stages.MRI imaging was employed to observe the degree of biological healing of the anterior talofibular ligament,with the signal to noise ratio(SNR)in-dicating the level of healing.A lower SNR suggests better ligament healing,as it represents lower water content in the ligament.Results All patients completed a 6-week follow-up.There was no significant difference in VAS,AOFAS score and Karlsson score between the two groups before treatment(P>0.05).After 1 week and 6 weeks of treatment,the VAS,AOFAS score and Karlsson score of the two groups were significantly improved(P<0.05).After 1 week of treatment,the VAS score of the obser-vation group(3.21±0.87)was lower than that of the control group(4.21±1.50),and the difference was statistically significant(P<0.05).After 1 weeks of treatment,the AOFAS and Karlsson scores[(50.84±4.70)points,(49.97±4.00)points]of the ob-servation group were higher than those[(46.91±5.56)points,(46.66±5.36)points]of the control group(P<0.05).MRI images showed that after 6 weeks of treatment,the SNR value of the observation group was significantly lower than that of the control group,and the difference was statistically significant(SNR of the observation group was 75.25±16.59,the contral gruop was 85.81±15.55),(P<0.05).Conclusion Compared with the control group,the new three-phase CM external treatment is signifi-cantly effective in reducing pain and swelling,enhancing ligament repair quality,and promoting functional recovery of the an-kle joint in patients with acute lateral malleolar ligament injuries.
		                        		
		                        		
		                        		
		                        	
8.Study on the material basis and mechanism of anti-insomnia mechanism of Ning Shen Essential Oil based on 1H NMR metabolomics and network pharmacology
Qing CHAI ; Hong-bin ZHANG ; Li-dong WU ; Jing-yi WANG ; Hai-chao LI ; Yu-hong LIU ; Hong-yan LIU ; Hai-qiang JIANG ; Zhen-hua TIAN
Acta Pharmaceutica Sinica 2024;59(8):2313-2325
		                        		
		                        			
		                        			 This paper applied gas chromatography-mass spectrometry (GC-MS), network pharmacology and nuclear magnetic resonance hydrogen spectroscopy (1H NMR) metabolomics techniques to study the material basis and mechanism of action of Ning Shen Essential Oil in anti-insomnia. The main volatile components of Ning Shen Essential Oil were analyzed by gas chromatography-mass spectrometry (GC-MS), and the insomnia-related targets were predicted using the Traditional Chinese Medicine Systematic Pharmacology Database and Analytical Platform (TCMSP) and the databases of GeneCards, OMIM and Drugbank. The insomnia model of rats was replicated by intraperitoneal injection of 4-chloro-
		                        		
		                        	
9.Preliminary exploration of the pharmacological effects and mechanisms of icaritin in regulating macrophage polarization for the treatment of intrahepatic cholangiocarcinoma
Jing-wen WANG ; Zhen LI ; Xiu-qin HUANG ; Zi-jing XU ; Jia-hao GENG ; Yan-yu XU ; Tian-yi LIANG ; Xiao-yan ZHAN ; Li-ping KANG ; Jia-bo WANG ; Xin-hua SONG
Acta Pharmaceutica Sinica 2024;59(8):2227-2236
		                        		
		                        			
		                        			 The incidence of intrahepatic cholangiocarcinoma (ICC) continues to rise, and there are no effective drugs to treat it. The immune microenvironment plays an important role in the development of ICC and is currently a research hotspot. Icaritin (ICA) is an innovative traditional Chinese medicine for the treatment of advanced hepatocellular carcinoma. It is considered to have potential immunoregulatory and anti-tumor effects, which is potentially consistent with the understanding of "Fuzheng" in the treatment of tumor in traditional Chinese medicine. However, whether ICA can be used to treat ICC has not been reported. Therefore, in this study, sgp19/kRas, an 
		                        		
		                        	
10.Establishment of a Multiplex Detection Method for Common Bacteria in Blood Based on Human Mannan-Binding Lectin Protein-Conjugated Magnetic Bead Enrichment Combined with Recombinase-Aided PCR Technology
Jin Zi ZHAO ; Ping Xiao CHEN ; Wei Shao HUA ; Yu Feng LI ; Meng ZHAO ; Hao Chen XING ; Jie WANG ; Yu Feng TIAN ; Qing Rui ZHANG ; Na Xiao LYU ; Qiang Zhi HAN ; Xin Yu WANG ; Yi Hong LI ; Xin Xin SHEN ; Jun Xue MA ; Qing Yan TIE
Biomedical and Environmental Sciences 2024;37(4):387-398
		                        		
		                        			
		                        			Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannan-binding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP. Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays. Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05). Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail