1.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
2.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
3.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
4.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
5.Efficacy of different approaches for screw internal fixation in the treatment of Haraguchi type Ⅰ posterior ankle fracture
Fang-Mao GAO ; Jie-Rong ZHANG ; Shi-Xi XIONG ; Xiao-Lin TIAN ; Chao LIN
Journal of Regional Anatomy and Operative Surgery 2024;33(6):521-524
Objective To investigate the efficacy of different approaches for screw internal fixation in the treatment of posterior ankle fractures in trimalleolar fracture,and the complications was analyzed.Methods A prospective study was conducted on 80 patients with Haraguchi type Ⅰ posterior ankle fracture who admitted to our hospital from May 2019 to October 2020,they were randomly divided into group A and group B according to a random number table method,with 40 cases in each group.Patients in group A were treated with percutaneous anterior to posterior screw internal fixation for posterior ankle fractures,while patients in group B were treated with percutaneous posterolateral approach limited exposure and reduction screw internal fixation for posterior ankle fractures.The surgical indicators,postoperative recovery,American Orthopaedic Foot and Ankle Society(AOFAS)score,ROM score of ankle joint at the last follow-up,postoperative evaluation,and postoperative complications of patients between the two groups were compared.Results There was no statistically significant difference in operation time,complete weight-bearing time,or fracture healing time of patients between the two groups(P>0.05),but the fluoroscopy times of patients in group A was less than that in group B,the intraoperative bleeding volume and fibular incision length were less/shorter than those in group B(P<0.05).The AOFAS scores of patients 6 months after surgery and at the last follow-up in both groups increased compared with those 3 months after surgery,and the AOFAS scores at the last follow-up were higher than those 6 months after surgery,the differences were statistically significant(P<0.05).The AOFAS scores of patients 6 months after surgery and at the last follow-up in group B were higher than those in group A(P<0.05).There was no statistically significant difference in ROM score of ankle joints(plantar flexion,valgus,varus,dorsiflexion)of patients between the two groups at the last follow-up(P>0.05).There was no statistically significant difference in poor screw position,degree of pain,walking condition,or squatting condition of patients between the two groups(P>0.05).However,the reduction quality of posterior ankle fractures of patients in group B was better than that in group A(Z=4.248,P<0.05).No complications such as loosening of internal fixation or loss of fracture reduction occurred in both groups.Conclusion Both percutaneous anterior to posterior screw internal fixation and percutaneous posterolateral approach limited exposure and reduction screw internal fixation have good efficacy for posterior ankle fractures in trimalleolar fracture,with high safty.The former has more fluoroscopy times and less intraoperative bleeding,while the latter is better in improving ankle joint function and fracture reduction.
6.Construction of a screening system for key intracellular survival proteins of macrophages of Staphylococcus aureus
Yaojia SHI ; Tian TIAN ; Tingrong XIONG ; Yu WANG ; Xiaokai ZHANG ; Quanming ZOU
Journal of Army Medical University 2024;46(8):815-821
Objective To establish a high-throughput screening system to obtain key Staphylococcus aureus (S.aureus)secretory proteins which required for S.aureus survival in macrophages.Methods Based on our validated eukaryotic expression vector library of S.aureus secretory proteins,DNA transfection was used to obtain an RAW264.7 macrophage array expressing S.aureus secretory proteins.After the RAW264.7 cells were infected with S.aureus,the extracellular bacteria were removed to observe the intracellular surviving situation of S.aureus.Finally,the screening results were validated by the overexpression and knockout S.aureus of corresponding secretory proteins.Results The optimal transfection dose (1.0 μg/well)of plasmids for RAW264.7,multiplicity of infection (MOI,1 .0 ),and infection time (4 h after removing extracellular bacteria of S.aureus ) were established respectively.To validate the screening results,the corresponding overexpression and knockout strains were constructed.And hypothetical protein and Serine protease E were found to promote the survival of intracellular S.aureus.Conclusion We successfully construct a screening system for key secreted secretory proteins which required for S.aureus surviving in macrophages,which may advance the study of the intracellular surviving mechanism of S.aureus.
7.Expert consensus on antiviral therapy of COVID-19
Fujie ZHANG ; Zhuo WANG ; Quanhong WANG ; Qing MAO ; Jinsong BAI ; Hanhui YE ; Jia TIAN ; Tianxin XIANG ; Jihong AN ; Zujiang YU ; Wenjie YANG ; Xingxiang YANG ; Xiaoju ZHANG ; Jie ZHANG ; Lina ZHANG ; Xingwang LI ; Jiabin LI ; Manxiang LI ; Zhiwei LI ; Hourong ZHOU ; Yi SHI ; Xiaoling XU ; Xiaoping TANG ; Hong TANG ; Xixin YAN ; Wenxiang HUANG ; Chaolin HUANG ; Liang DONG ; Baosong XIE ; Jiandong JIANG ; Bin XIONG ; Xuemei WEI ; Jifang SHENG ; Ronghua JIN
Chinese Journal of Clinical Infectious Diseases 2023;16(1):10-20
COVID-19 is caused by a novel coronavirus-severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which has being spreading around the world, posing a serious threat to human health and lives. Neutralizing antibodies and small molecule inhibitors for virus replication cycle are the main antiviral treatment for novel coronavirus recommended in China. To further promote the rational use of antiviral therapy in clinical practice, the National Center for Infectious Diseases (Beijing Ditan Hospital Capital Medical University and the First Affiliated Hospital, Zhejiang University School of Medicine) invited experts in fields of infectious diseases, respiratory and intensive care to develop an Expert Consensus on Antiviral Therapy of COVID-19 based on the Diagnosis and Treatment Guideline for COVID-19 ( trial version 10) and experiences in the diagnosis and treatment of COVID-19 in China. The consensus is concise, practical and highly operable, hopefully it would improve the understanding of antiviral therapy for clinicians and provide suggestions for standardized medication in treatment of COVID-19.
8.Regulation of Baicalin on Growth of Extranodal NK/T Cell Lymphoma Cells through FOXO3/CCL22 Signaling Pathway.
Xiao-Hui DUAN ; Hong LI ; Yao LYU ; Jing LIU ; Shi-Xiong WANG ; Zhen-Tian WU ; Bing-Xuan WANG ; Ming LU ; Jian-Hong WANG ; Rong LIANG
Journal of Experimental Hematology 2023;31(3):730-738
OBJECTIVE:
To investigate the effect of baicalin on the growth of extranodal NK/T cell lymphoma (ENKTCL) cells and its related mechanism.
METHODS:
Normal NK cells and human ENKTCL cells lines SNK-6 and YTS were cultured, then SNK-6 and YTS cells were treated with 5, 10, 20 μmol/L baicalin and set control. Cell proliferation and apoptosis was detected by Edu method and FCM method, respectively, and expressions of BCL-2, Bax, FOXO3 and CCL22 proteins were detected by Western blot. Interference plasmids were designed and synthesized. FOXO3 siRNA interference plasmids and CCL22 pcDNA overexpression plasmids were transfected with PEI transfection reagent. Furthermore, animal models were established for validation.
RESULTS:
In control group and 5, 10, 20 μmol/L baicalin group, the proliferation rate of SNK-6 cells was (56.17±2.96)%, (51.92±4.63)%, (36.42±1.58)%, and (14.60±2.81)%, respectively, while that of YTS cells was (58.85±2.98)%, (51.38±1.32)%, (34.75±1.09)%, and (15.45±1.10)%, respectively. In control group and 5, 10, 20 μmol/L baicalin group, the apoptosis rate of SNK-6 cells was (5.93±0.74)%, (11.78±0.34)%, (28.46±0.44)%, and (32.40±0.37)%, respectively, while that of YTS cells was (7.93±0.69)%, (16.29±1.35)%, (33.91±1.56)%, and (36.27±1.06)%, respectively. Compared with control group, the expression of BCL-2 protein both in SNK-6 and YTS cells decreased significantly (P<0.001), and the expression of Bax protein increased in SNK-6 cells only when the concentration of baicalin was 20 μmol/L (P<0.001), while that in YTS cells increased in all three concentrations(5, 10, 20 μmol/L) of baicalin (P<0.001). The expression of FOXO3 protein decreased while CCL22 protein increased in ENKTCL cell lines compared with human NK cells (P<0.001), but the expression of FOXO3 protein increased (P<0.01) and CCL22 protein decreased after baicalin treatment (P<0.001). Animal experiments showed that baicalin treatment could inhibit tumor growth. The expression of CCL22 protein in ENKTCL tissue of nude mice treated with baicalin decreased compared with control group (P<0.01), while the FOXO3 protein increased (P<0.05). In addition, FOXO3 silencing resulted in the decrease of FOXO3 protein expression and increase of CCL22 protein expression (P<0.01, P<0.001).
CONCLUSION
Baicalin can inhibit proliferation and promote apoptosis of ENKTCL cell lines SNK-6 and YTS, up-regulate the expression of Bax protein, down-regulate the expression of BCL-2 protein, and down-regulate the expression of CCL22 protein mediated by FOXO3. Animal experiment shown that the baicalin can inhibit tumor growth. Baicalin can inhibit the growth and induce apoptosis of ENKTCL cells through FOXO3/CCL22 signaling pathway.
Animals
;
Mice
;
Humans
;
Lymphoma, Extranodal NK-T-Cell/pathology*
;
Forkhead Box Protein O3/metabolism*
;
bcl-2-Associated X Protein/pharmacology*
;
Mice, Nude
;
Signal Transduction
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Chemokine CCL22/pharmacology*
9.scRNA-seq reveals that origin recognition complex subunit 6 regulates mouse spermatogonial cell proliferation and apoptosis via activation of Wnt/β-catenin signaling.
Shi-Wei LIU ; Jia-Qiang LUO ; Liang-Yu ZHAO ; Ning-Jing OU ; CHAO-YANG ; Yu-Xiang ZHANG ; Hao-Wei BAI ; Hong-Fang SUN ; Jian-Xiong ZHANG ; Chen-Cheng YAO ; Peng LI ; Ru-Hui TIAN ; Zheng LI ; Zi-Jue ZHU
Asian Journal of Andrology 2023;26(1):46-56
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 (Orc6), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/ β-catenin signaling. Western blot revealed that the expression of β-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
10.Effect of Baicalin on Pyroptosis of Diffuse Large B-Cell Lymphoma Cell Lines DB and Its Mechanism.
Ming LU ; Chun-Ling HE ; Zhen-Tian WU ; Yao LYU ; Xiao-Hui DUAN ; Bing-Xuan WANG ; Shi-Xiong WANG ; Jian-Hong WANG ; Rong LIANG
Journal of Experimental Hematology 2023;31(6):1706-1713
OBJECTIVE:
To investigate the effect of Baicalin on the proliferation and pyroptosis of diffuse large B-cell lymphoma cell line DB and its mechanism.
METHODS:
DB cells were treated with baicalin at different concentrations (0, 5, 10, 20, 40 μmol/L). Cell proliferation was detected by CCK-8 assay and half maximal inhibitory concentration (IC50) was calculated. The morphology of pyroptosis was observed under an inverted microscope, the integrity of the cell membrane was verified by LDH content release assay, and the expressions of pyroptosis-related mRNA and protein (NLRP3, GSDMD, GSDME, N-GSDMD, N-GSDME) were detected by real-time fluorescence quantitative PCR and Western blot. In order to further clarify the relationship between baicalin-induced pyroptosis and ROS production in DB cells, DB cells were divided into control group, baicalin group, NAC group and NAC combined with baicalin group. DB cells in the NAC group were pretreated with ROS inhibitor N-acetylcysteine (NAC) 2 mmol/L for 2 h. Baicalin was added to the combined treatment group after pretreatment, and the content of reactive oxygen species (ROS) in the cells was detected by DCFH-DA method after 48 hours of culture.
RESULTS:
Baicalin inhibited the proliferation of DB cells in a dose-dependent manner (r=-0.99), and the IC50 was 20.56 μmol/L at 48 h. The morphological changes of pyroptosis in DB cells were observed under inverted microscope. Compared with the control group, the release of LDH in the baicalin group was significantly increased (P<0.01), indicating the loss of cell membrane integrity. Baicalin dose-dependently increased the expression levels of NLRP3, N-GSDMD, and N-GSDME mRNA and protein in the pyroptosis pathway (P<0.05). Compared with the control group, the level of ROS in the baicalin group was significantly increased (P<0.05), and the content of ROS in the NAC group was significantly decreased (P<0.05). Compared with the NAC group, the content of ROS in the NAC + baicalin group was increased. Baicalin significantly attenuated the inhibitory effect of NAC on ROS production (P<0.05). Similarly, Western blot results showed that compared with the control group, the expression levels of pyroptosis-related proteins was increased in the baicalin group (P<0.05). NAC inhibited the expression of NLRP3 and reduced the cleavage of N-GSDMD and N-GSDME (P<0.05). Compared with the NAC group, the NAC + baicalin group had significantly increased expression of pyroptosis-related proteins. These results indicate that baicalin can effectively induce pyroptosis in DB cells and reverse the inhibitory effect of NAC on ROS production.
CONCLUSION
Baicalin can inhibit the proliferation of DLBCL cell line DB, and its mechanism may be through regulating ROS production to affect the pyroptosis pathway.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/pharmacology*
;
Pyroptosis
;
Cell Line
;
RNA, Messenger
;
Lymphoma, Large B-Cell, Diffuse

Result Analysis
Print
Save
E-mail