1.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
3.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
4.Transcription Factor ETS1 Promotes Glioma Cell Growth by Activating LncRNA XIST
Ran LUO ; Wenyi LUO ; Mingkai LU ; Meng ZHOU ; Yanting LIU ; Chunlei TIAN
Cancer Research on Prevention and Treatment 2024;51(5):328-335
Objective To explore the biological function and downstream mechanism of ETS1 in glioma.Methods Bioinformatics and immunohistochemistry were used to analyze the differential expression characteristics of ETS1 in gliomas;qRT-PCR was employed to detect the expression level of ETS1 mRNA and lncRNA X-inactive specific transcript(XIST).CCK-8 and 5-ethyl-2′-deoxyuridine experiments were conducted to detect cell growth.Western blot was used to detect the expression of apoptosis-related proteins(Bax,Bak,Bcl-2).PROMO database was utilized to predict the binding sites between ETS1 and XIST promoter.Dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative polymerase chain reaction assays were performed to verify the binding relationship between ETS1 and the XIST promoter region.cBioPortal database was used to analyze the correlation between the expression of ETS1 mRNA and XIST in glioma tissues.Results The expression levels of ETS1 mRNA and protein were significantly upregulated in glioma(P<0.05).The depletion of ETS1 significantly inhibited the proliferation of glioma cells and promoted cell apoptosis(P<0.05).ETS1 could target and bind with the XIST promoter and promote the expression of XIST(P<0.05).The overexpression of XIST reversed the effects of ETS1 on the proliferation of glioma cells and the promotion of cell apoptosis(P<0.05).Conclusion ETS1 is highly expressed in glioma tissues.It could promote the expression of lncRNA XIST,boost the proliferation of glioma cells,and inhibit cell apoptosis.
5.CT radiomics for differentiating spinal bone island and osteoblastic bone metastases
Xin WEN ; Liping ZUO ; Yong WANG ; Ziyu TIAN ; Fei LU ; Shuo SHI ; Lingyu CHANG ; Yu JI ; Ran ZHANG ; Dexin YU
Chinese Journal of Medical Imaging Technology 2024;40(5):758-763
Objective To observe the value of CT radiomics for differentiating spinal bone islands(BI)and osteoblastic metastases(OBM).Methods Data of 109 BI lesions in 98 patients and 282 OBM lesions in 158 patients(including 103 OBM in 48 lung cancer cases,86 OBM in 52 breast cancer cases and 93 OBM in 58 prostate cancer cases)from 3 medical institutions were retrospectively analyzed.Data obtained from institution 1 were used as the internal dataset and divided into internal training set and internal validation set at a ratio of 7∶3,from institution 2 and 3 were used as external dataset.All datasets were divided into female data subset(including OBM of female lung cancer and breast cancer)and male data subset(including OBM of male lung cancer and prostate cancer).Radiomics features were extracted and screened to construct 3 different support vector machine(SVM)models,including model1 for distinguishing BI and OBM,model2 for differentiating OBM of female lung cancer and breast cancer,and model3 for differentiating OBM of male lung cancer and prostate cancer.Diagnostic efficacy of model1,CT value alone and 3 physicians(A,B,C)for distinguishing BI and OBM were assessed,as well as differentiating efficacy for different OBM of model2 and model3.Receiver operating characteristic(ROC)curves were drawn,and area under the curves(AUC)were calculated and compared.The differential diagnostic efficacy of model2 and model3 were also assessed with ROC analysis and AUC.Results AUC of model1 for distinguishing spinal OBM from BI in internal training set,internal validation set and external dataset was 0.99,0.98 and 0.86,respectively.In internal training set,model1 had higher AUC for distinguishing BI and OBM than that of physician A(AUC=0.78),B(AUC=0.87)and C(AUC=0.93)as well as that of mean CT value(AUC=0.78,all P<0.05).AUC in internal training set,internal validation set and external dataset of model2 for identifying female lung cancer and breast cancer OBM was 0.79,0.75 and 0.73,respectively,of model3 for discriminating male lung cancer from prostate cancer OBM was 0.77,0.74 and 0.77,respectively.Conclusion CT radiomics SVM model might reliablely distinguish OBM and BI.
6.The rh-CSF1 improves mitochondrial function and cell apoptosis in neurons under oxygen-glucose deprivation
Rui LIU ; Kuan FAN ; Pengju ZHANG ; Yu TIAN ; Wei SI ; Shirong LI ; Lu WANG ; Ran GU ; Xiao HU
Chinese Journal of Nervous and Mental Diseases 2024;50(8):489-494
Objective To investigate the mechanism by which Colony Stimulating Factor-1(CSF1)inhibits apoptosis in neurons subjected to oxygen-glucose deprivation(OGD).Methods Primary rat cortical neurons were divided into the OGD damaged neuron model group(OGD group),the rh-CSF1 intervention group(rh-CSF1 group),and control group.The sample size for each group was 3.After intervention with recombinant human CSF1(rh-CSF1),neuronal apoptosis rate and intracellular ATP content,reactive oxygen species levels,mitochondrial membrane potential,and mitochondrial DNA copy number were measured.The content of malondialdehyde within mitochondria and the activity of superoxide dismutase were also assessed.Results Intervention with rh-CSF1 increased mitochondrial membrane potential(0.55±0.03 vs.0.43±0.06,P<0.01),mitochondrial DNA copy number(0.88±0.05 vs.0.72±0.06,P<0.05),ATP content[(15.70±0.99)mmol/mg vs.(11.70±1.00)mmol/mg,P<0.01)],and superoxide dismutase[(18.47±1.38)U/mg vs.(14.78±1.81)U/mg,P<0.05)]activity in neurons injured by OGD.It also reduced levels of rectivereactive oxygen species(3.64±0.21 vs.4.45±0.33,P<0.05)and malondialdehyde within mitochondria[(2.13±0.19)mmol/mg vs.(2.78±0.20)mmol/mg,P<0.05)],and inhibited neuronal apoptosis(10.12±0.78 vs.17.04±1.23,P<0.01)Conclusion rh-CSF1 may alleviate the damage in neurons induced by OGD by improving mitochondrial function,reducing oxidative stress,and inhibiting cell apoptosis.
7.Effect of Chinese Medicine in Patients with COVID-19: A Multi-center Retrospective Cohort Study.
Guo-Zhen ZHAO ; Shi-Yan YAN ; Bo LI ; Yu-Hong GUO ; Shuang SONG ; Ya-Hui HU ; Shi-Qi GUO ; Jing HU ; Yuan DU ; Hai-Tian LU ; Hao-Ran YE ; Zhi-Ying REN ; Ling-Fei ZHU ; Xiao-Long XU ; Rui SU ; Qing-Quan LIU
Chinese journal of integrative medicine 2024;30(11):974-983
OBJECTIVE:
To evaluate the effectiveness and safety of Chinese medicine (CM) in the treatment of coronavirus disease 2019 (COVID-19) in China.
METHODS:
A multi-center retrospective cohort study was carried out, with cumulative CM treatment period of ⩾3 days during hospitalization as exposure. Data came from consecutive inpatients from December 19, 2019 to May 16, 2020 in 4 medical centers in Wuhan, China. After data extraction, verification and cleaning, confounding factors were adjusted by inverse probability of treatment weighting (IPTW), and the Cox proportional hazards regression model was used for statistical analysis.
RESULTS:
A total of 2,272 COVID-19 patients were included. There were 1,684 patients in the CM group and 588 patients in the control group. Compared with the control group, the hazard ratio (HR) for the deterioration rate in the CM group was 0.52 [95% confidence interval (CI): 0.41 to 0.64, P<0.001]. The results were consistent across patients of varying severity at admission, and the robustness of the results were confirmed by 3 sensitivity analyses. In addition, the HR for all-cause mortality in the CM group was 0.29 (95% CI: 0.19 to 0.44, P<0.001). Regarding of safety, the proportion of patients with abnormal liver function or renal function in the CM group was smaller.
CONCLUSION
This real-world study indicates that the combination of a full-course CM therapy on the basic conventional treatment, may safely reduce the deterioration rate and all-cause mortality of COVID-19 patients. This result can provide the new evidence to support the current treatment of COVID-19. Additional prospective clinical trial is needed to evaluate the efficacy and safety of specific CM interventions. (Registration No. ChiCTR2200062917).
Humans
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
COVID-19/epidemiology*
;
COVID-19 Drug Treatment
;
Aged
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/adverse effects*
;
SARS-CoV-2
;
Treatment Outcome
;
China/epidemiology*
;
Adult
8.Exploration and example interpretation of real-world herbal prescription classification based on similarity matching algorithm.
Guo-Zhen ZHAO ; Hai-Tian LU ; Shi-Yan YAN ; Yu-Hong GUO ; Hao-Ran YE ; Li JIANG ; Yao-Fu ZHANG ; Jing HU ; Shi-Qi GUO ; Yuan DU ; Fang-Yu LIU ; Bo LI ; Qing-Quan LIU
China Journal of Chinese Materia Medica 2023;48(4):1132-1136
In observational studies, herbal prescriptions are usually studied in the form of "similar prescriptions". At present, the classification of prescriptions is mainly based on clinical experience judgment, but there are some problems in manual judgment, such as lack of unified criteria, labor consumption, and difficulty in verification. In the construction of a database of integrated traditional Chinese and western medicine for the treatment of coronavirus disease 2019(COVID-19), our research group tried to classify real-world herbal prescriptions using a similarity matching algorithm. The main steps include 78 target prescriptions are determined in advance; four levels of importance labeling shall be carried out for the drugs of each target prescription; the combination, format conversion, and standardization of drug names of the prescriptions to be identified in the herbal medicine database; calculate the similarity between the prescriptions to be identified and each target prescription one by one; prescription discrimination is performed based on the preset criteria; remove the name of the prescriptions with "large prescriptions cover the small". Through the similarity matching algorithm, 87.49% of the real prescriptions in the herbal medicine database of this study can be identified, which preliminarily proves that this method can complete the classification of herbal prescriptions. However, this method does not consider the influence of herbal dosage on the results, and there is no recognized standard for the weight of drug importance and criteria, so there are some limitations, which need to be further explored and improved in future research.
Humans
;
COVID-19
;
Algorithms
;
Databases, Factual
;
Prescriptions
;
Plant Extracts
9.Predictive value of the proportion of hibernating myocardium in total perfusion defect on reverse remodeling in patients with HFrEF underwent coronary artery bypass graft.
Yao LU ; Jian CAO ; En Jun ZHU ; Ming Xin GAO ; Tian Tian MOU ; Ying ZHANG ; Xiao Fen XIE ; Yi TIAN ; Ming Kai YUN ; Jing Jing MENG ; Xiu Bin YANG ; Yong Qiang LAI ; Ran DONG ; Xiao Li ZHANG
Chinese Journal of Cardiology 2023;51(4):384-392
Objective: To evaluate the predictive value of the proportion of hibernating myocardium (HM) in total perfusion defect (TPD) on reverse left ventricle remodeling (RR) after coronary artery bypass graft (CABG) in patients with heart failure with reduced ejection fraction (HFrEF) by 99mTc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) combined with 18F-flurodeoxyglucose (FDG) gated myocardial imaging positron emission computed tomography (PET). Methods: Inpatients diagnosed with HFrEF at the Cardiac Surgery Center, Anzhen Hospital of Capital Medical University from January 2016 to January 2022 were prospectively recruited. MPI combined with 18F-FDG gated PET was performed before surgery for viability assessment and the patients received follow-up MPI and 18F-FDG gated PET at different stages (3-12 months) after surgery. Δ indicated changes (post-pre). Left ventricular end-systolic volume (ESV) reduced at least 10% was defined as RR, patients were divided into reverse remodeling (RR+) group and the non-reverse group (RR-). Binary logistic regression analysis was used to identify predictors of RR. Receiver operating characteristic (ROC) curve analysis was performed and the area under the curve (AUC) was calculated to assess the cut-off value for predicting RR. Additionally, we retrospectively enrolled inpatients with HFrEF at the Cardiac Surgery Center, Anzhen Hospital of Capital Medical University from January 2021 to January 2022 as the validation group, who underwent MPI and 18F-FDG gated PET before surgery. Echocardiography was performed before CABG and after CABG (3-12 months). In the validation group, the reliability of obtaining the cut-off value for the ROC curve was verified. Results: A total of 28 patients with HFrEF (26 males; age (56.9±8.7) years) were included in the prospective cohort. HM/TPD was significantly higher in the RR+ group than in the RR- group ((51.8%±17.9%) vs. (35.7%±13.9%), P=0.016). Binary logistic regression analysis revealed that HM/TPD was an independent predictor of RR (Odds ratio=1.073, 95% Confidence interval: 1.005-1.145, P=0.035). ROC curve analysis revealed that HM/TPD=38.3% yielded the highest sensitivity, specificity, and accuracy (all 75%) for predicting RR and the AUC was 0.786 (P=0.011). Meanwhile, a total of 100 patients with HFrEF (90 males; age (59.7±9.6) years) were included in the validation group. In the validation group, HM/TPD=38.3% predicted RR in HFrEF patients after CABG with the highest sensitivity, specificity and accuracy (82%, 60% and 73% respectively). Compared with the HFrEF patients in the HM/TPD<38.3% group (n=36), RR and cardiac function improved more significantly in the HM/TPD≥38.3% group (n=64) (all P<0.05). Conclusions: Preoperative HM/TPD ratio is an independent factor for predicting RR in patients with HFrEF after CABG, and HM/TPD≥38.3% can accurately predict RR and the improvement of cardiac function after CABG.
Male
;
Humans
;
Middle Aged
;
Aged
;
Stroke Volume
;
Heart Failure
;
Fluorodeoxyglucose F18
;
Retrospective Studies
;
Reproducibility of Results
;
Prospective Studies
;
Coronary Artery Bypass
;
Ventricular Dysfunction, Left
;
Tomography, Emission-Computed, Single-Photon
;
Perfusion
;
Myocardium
10.Expert consensus on late stage of critical care management.
Bo TANG ; Wen Jin CHEN ; Li Dan JIANG ; Shi Hong ZHU ; Bin SONG ; Yan Gong CHAO ; Tian Jiao SONG ; Wei HE ; Yang LIU ; Hong Min ZHANG ; Wen Zhao CHAI ; Man hong YIN ; Ran ZHU ; Li Xia LIU ; Jun WU ; Xin DING ; Xiu Ling SHANG ; Jun DUAN ; Qiang Hong XU ; Heng ZHANG ; Xiao Meng WANG ; Qi Bing HUANG ; Rui Chen GONG ; Zun Zhu LI ; Mei Shan LU ; Xiao Ting WANG
Chinese Journal of Internal Medicine 2023;62(5):480-493
We wished to establish an expert consensus on late stage of critical care (CC) management. The panel comprised 13 experts in CC medicine. Each statement was assessed based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) principle. Then, the Delphi method was adopted by 17 experts to reassess the following 28 statements. (1) ESCAPE has evolved from a strategy of delirium management to a strategy of late stage of CC management. (2) The new version of ESCAPE is a strategy for optimizing treatment and comprehensive care of critically ill patients (CIPs) after the rescue period, including early mobilization, early rehabilitation, nutritional support, sleep management, mental assessment, cognitive-function training, emotional support, and optimizing sedation and analgesia. (3) Disease assessment to determine the starting point of early mobilization, early rehabilitation, and early enteral nutrition. (4) Early mobilization has synergistic effects upon the recovery of organ function. (5) Early functional exercise and rehabilitation are important means to promote CIP recovery, and gives them a sense of future prospects. (6) Timely start of enteral nutrition is conducive to early mobilization and early rehabilitation. (7) The spontaneous breathing test should be started as soon as possible, and a weaning plan should be selected step-by-step. (8) The waking process of CIPs should be realized in a planned and purposeful way. (9) Establishment of a sleep-wake rhythm is the key to sleep management in post-CC management. (10) The spontaneous awakening trial, spontaneous breathing trial, and sleep management should be carried out together. (11) The depth of sedation should be adjusted dynamically in the late stage of CC period. (12) Standardized sedation assessment is the premise of rational sedation. (13) Appropriate sedative drugs should be selected according to the objectives of sedation and drug characteristics. (14) A goal-directed minimization strategy for sedation should be implemented. (15) The principle of analgesia must be mastered first. (16) Subjective assessment is preferred for analgesia assessment. (17) Opioid-based analgesic strategies should be selected step-by-step according to the characteristics of different drugs. (18) There must be rational use of non-opioid analgesics and non-drug-based analgesic measures. (19) Pay attention to evaluation of the psychological status of CIPs. (20) Cognitive function in CIPs cannot be ignored. (21) Delirium management should be based on non-drug-based measures and rational use of drugs. (22) Reset treatment can be considered for severe delirium. (23) Psychological assessment should be conducted as early as possible to screen-out high-risk groups with post-traumatic stress disorder. (24) Emotional support, flexible visiting, and environment management are important components of humanistic management in the intensive care unit (ICU). (25) Emotional support from medical teams and families should be promoted through"ICU diaries"and other forms. (26) Environmental management should be carried out by enriching environmental content, limiting environmental interference, and optimizing the environmental atmosphere. (27) Reasonable promotion of flexible visitation should be done on the basis of prevention of nosocomial infection. (28) ESCAPE is an excellent project for late stage of CC management.
Humans
;
Consensus
;
Critical Care/methods*
;
Intensive Care Units
;
Pain/drug therapy*
;
Analgesics/therapeutic use*
;
Delirium/therapy*
;
Critical Illness

Result Analysis
Print
Save
E-mail