1.Effect of laminin subunit α3 on epithelial-mesenchymal transition, invasion, and metastasis abilities of pancreatic cancer
Nenghong YANG ; Likun REN ; She TIAN ; Min HAN ; Zhu LI ; Yuxiang ZHAO ; Peng LIU
Journal of Clinical Hepatology 2025;41(2):322-332
ObjectiveTo investigate the effect of laminin subunit α3 (LAMA3) on the epithelial-mesenchymal transition (EMT), invasion, and metastasis abilities of pancreatic cancer (PC). MethodsA comprehensive analysis was performed for tumor- and EMT-related databases to identify the EMT genes associated with PC, especially LAMA3. The methods of qRT-PCR and Western blot were used to measure the expression level of LAMA3 in PC tissue and cell lines; immunofluorescence assay was used to determine the localization of LAMA3 in PANC-1 cells; Transwell assay was used to investigate the effect of LAMA3 on the invasion and migration abilities of PC cells. The t-test was used for comparison of continuous data between groups. ResultsThe analysis of the TCGA database identified 3 EMT-related oncogenes for PC, i.e., LAMA3, AREG, and SDC1. The LASSO-Cox regression model showed that LAMA3 had the most significant impact on the prognosis of PC (risk score=0.256 1×LAMA3+0.043 1×SDC1+0.071 4×AREG). The Cox model and nomogram showed that the high expression of LAMA3 was an independent risk factor for the poor prognosis of PC (hazard ratio=1.32, 95% confidence interval: 1.07 — 1.62, P<0.01). Experimental results showed that there was a significant increase in the expression of LAMA3 in pancreatic cancer tissue compared with the normal pancreatic tissue. Compared with the HPDE cell line, there were varying degrees of increase in the expression of LAMA3 in pancreatic cancer AsPC-1, BxPC-3, PANC-1, MIA PaCa-2, and SW1990 cell lines, with the highest expression level in PANC-1 cells. The enrichment analysis showed that LAMA3 was associated with the biological processes and signaling pathways such as EMT, collagen metabolism, extracellular matrix degradation, the TGF-β pathway, and the PI3K pathway. After the knockdown of LAMA3, there were significant reductions in the expression levels of N-Cadherin, Vimentin, and Snail, while there was a significant increase in the expression level of E-Cadherin. Transwell assay showed that there were significant reductions in the invasion and migration abilities of PANC-1 cells after the knockdown of LAMA3. ConclusionLAMA3 is highly expressed in PC and can promote the EMT, invasion, and migration of PC cells, and therefore, LAMA3 may be used as a novel diagnostic marker and a new therapeutic target for PC.
2.A three-party evolutionary game analysis of patient privacy protection in live surgery
Han TIAN ; Jinping WU ; Yan ZHANG ; Jianyu ZHOU
Chinese Medical Ethics 2025;38(1):123-130
With the rapid development of network technology, live surgery has become the new way of surgery teaching. However, the issue of patient privacy protection caused by live surgery has received widespread attention. Based on the evolutionary game theory, this paper constructed an evolutionary game model from the three-party perspectives of doctors, patients, and government and analyzed the game behaviors of the three parties in the process of live surgery. Matlab software was utilized to conduct dynamic simulation and numerical simulation analysis. It was found that the factors affecting the choice of doctors’ strategies included protection costs, the cost of privacy leakage, the benefits of protection, high-traffic benefits, and other aspects; the factors affecting the choice of patient strategies encompassed surgical costs, the risk of privacy leakage, additional benefits, and other aspects; the factors affecting the choice of government strategies embodied regulatory costs and the improvement of credibility. To realize a win-win situation among doctors, patients, and the government, the three parties need to work together to ensure that patient privacy is not violated and find a balance between expanding the influence of medical education and protecting patient privacy.
3.Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization
Shuai CHEN ; Jie JIN ; Huawei HAN ; Ningsheng TIAN ; Zhiwei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1556-1564
BACKGROUND:Many recent studies have shown a close relationship between inflammatory cytokines and osteoporosis and bone mineral density(BMD).However,the causal relationship between inflammatory cytokines and BMD has not been fully revealed. OBJECTIVE:To explore the potential causal relationship between inflammatory cytokines and BMD using a two-sample Mendelian randomization analysis. METHODS:The single nucleotide polymorphisms associated with 41 circulating inflammatory cytokines were selected from the open database of genome-wide association studies(GWAS)as instrumental variables.The GWAS data about BMD were from the Genetic Factors for Osteoporosis Consortium,involving a total of 32 735 individuals of European ancestry.Inverse variance weighting was used as the primary analysis to evaluate the causal effect.Weighted median,MR Egger regression,simple mode,and weighted mode methods were used to supplement the explanation.We used the MR-Egger intercept and MR-PRESSO method to conduct a pleiotropy test,the Cochran's Q test was used to determine whether there was heterogeneity in the results,and the leave-one-out method was used to evaluate the stability of the results.In addition,to more accurately assess the causality,the Bonferroni-corrected test was used to identify inflammatory cytokines that have a strong causal relationship with BMD. RESULTS AND CONCLUSION:(1)According to the results of the inverse variance weighting method,we found a positive causal relationship between interleukin-8 and lumbar spine BMD[β=0.075,95%confidence interval(CI):0.033-0.117,P=0.000 5),while a negative causal relationship between interleukin-17 and lumbar spine BMD(β=-0.083,95%CI:-0.152 to-0.014,P=0.018).There might be a negative causal relationship between tumor necrosis factor b and femoral neck BMD(β=-0.053,95%CI:-0.088 to-0.018,P=0.003),while a positive causal relationship between basic fibroblast growth factor and femoral neck BMD(β=0.085,95%CI:0.016-0.154,P=0.015).There might be a negative causal relationship between macrophage inflammatory protein-1a and total body BMD(β=-0.056,95%CI:-0.105 to-0.007,P=0.025).There was a negative causal relationship between interleukin-5(β=-0.019,95%CI:-0.031 to-0.006,P=0.004),stromal cell-derived factor-1a(β=-0.022,95%CI:-0.038 to-0.005,P=0.010),hepatocyte growth factor(β=-0.021,95%CI:-0.041 to-0.002,P=0.030),interleukin-4(β=-0.016,95%CI:-0.032 to-0.001,P=0.034)and heel BMD,while a positive causal relationship between nerve growth factor(β=0.019,95%CI:0.002-0.036,P=0.033),granulocyte colony-stimulating factor(β=0.011,95%CI:0.000-0.022,P=0.050),and heel BMD.Meanwhile,after the Bonferroni-corrected test,there was a strong positive causal effect between interleukin-8 and lumbar spine BMD(P=0.000 5).And consistent directional effects for all analyses were observed in MR Egger,weighted median,simple mode,and weighted mode methods.(2)Sensitivity analyses revealed no heterogeneity,pleiotropy,or outliers for the causal effect of circulating inflammatory cytokines on BMD.
4.Application of ultra-wide-field swept-source optical coherence tomography angiography in patients with diabetic retinopathy and diabetic kidney disease
Zhutao LIU ; Beibei HAN ; Wen YU ; Na LI ; Tian ZHANG
International Eye Science 2025;25(5):819-825
AIM: To analyze the clinical utility and value of the ultra-wide-field swept-source optical coherence tomography angiography(UWF-SS-OCTA)technique in changes of blood flow density and thickness in the central and peripheral regions of the retina and choroid in patients with nonproliferative diabetic retinopathy(NPDR)with or without diabetic kidney disease(DKD).METHODS: Cross-sectional study. Totally 50 cases(50 eyes)of diabetes mellitus(DM)that visited our hospital between June 2023 and June 2024 were included. They were divided into three groups: NPDR combined with DKD group(DKD group, n=20), NPDR without DKD group(NDKD group, n=20), and DM without retinopathy group(DM group, n=10, which served as control). In order to investigate the impact of DKD on ocular microangiopathy in NPDR patients, the retina and choroid within 24 mm×20 mm of the scan were separated into central and peripheral areas using the 3×3 nine-grid partition option that comes with UWF-SS-OCTA, and the parameters were then quantitatively assessed.RESULTS:The central and peripheral blood flow density of the choroidal capillary layer(CCP)was statistically significant between the DM group and the DKD group(t=3.93, P=0.0003; t=3.34, P=0.0016), and between the NDKD group and the DKD group(t=-3.06, P=0.003; t=-2.55, P=0.013), but there was no statistically significant difference between the DM group and the NDKD group(t=1.44, P=0.157; t=1.26, P=0.21). The mid-large choroidal vessel(MLCV)showed a progressive decline in central and peripheral blood flow density in the DM, NDKD, and DKD groups(F=13.74, 19.03, all P<0.0001). The DM, NDKD, and DKD groups saw a progressive decrease in central and peripheral choroidal thickness(CT; F=10.72, P=0.0001; F=13.12, P<0.001).CONCLUSION:CCP, MLCV, and CT can be used as visual indicators to identify impaired renal function in patients with NPDR. UWF-SS-OCTA can support the development of precise and noninvasive monitoring and treatment technology for diabetic ocular microangiopathy, while also offering a scientific foundation for the joint management of DR and DKD.
5.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
6.Mechanism of action of sex hormones in regulating T cell-mediated autoimmune hepatitis: A study based on the phenomenon of female bias
Haiqiang WANG ; Dasha SUN ; Han WANG ; Jiahua TIAN ; Xinyue CUI ; Ming LI
Journal of Clinical Hepatology 2025;41(4):742-747
Autoimmune hepatitis (AIH) is an autoimmune disease characterized by liver parenchymal destruction and chronic fibrosis, and it is often mediated by T cells. The pathogenesis of AIH involves multiple factors, including sex, region, environmental factors, and genetic susceptibility. A notable predisposition is observed in female individuals, and the incidence rate of AIH in female individuals is significantly higher than that in male individuals. This sex difference is associated with various factors, and sex hormones may be an important cause of the female predominance of AIH, although the specific mechanisms remain unclear. An in-depth understanding of the mechanism of action of sex hormones in the pathogenesis of AIH will help to better understand the pathogenesis of the disease and may provide important clues for developing future treatment methods and prevention strategies. This article reviews the mechanism of action of estrogen and androgen in regulating the pathogenesis of AIH by regulating T cells, in order to provide new ideas and directions for further exploring the potential role of sex hormones in the etiology of autoimmune diseases.
7.Study on medical damage liability dispute cases involving breach of the duty to inform
Yan ZHANG ; Jinping WU ; Han TIAN ; Jianyu ZHOU
Chinese Medical Ethics 2025;38(5):582-587
ObjectiveTo understand the current situation of medical damage liability disputes involving breach of the duty to inform in China, analyze the factors influencing the types of medical staff’s breach of the duty to inform, and explore the notification problems of medical staff in clinical practice. On these foundations, suggestions were proposed to improve the performance of the duty to inform and reduce medical disputes. MethodsUsing public cases from the China Judgements Online as the data source, the relationship between risk points and types of breach of duty to inform was analyzed using the Chi-square test. Logistic regression analysis was performed to explore the influencing factors of the types of breach of the duty to inform, and qualitative research summarized the specific contents of breach of the duty to inform. ResultsThere were differences in the effects of factors, including whether the patient was hospitalized, whether surgery was performed, whether Intensive Care Unit (ICU) treatment was required, the level of the medical institution, and whether a consultation occurred, on the types of breach of the duty to inform (P<0.05). Whether surgery was performed was an influencing factor for the types of breach of the duty to inform. Qualitative research showed that the contents of breach of duty to inform primarily involve risk, treatment plan, and deficiencies in disease notification. ConclusionStrengthening the performance of the medical staff’s duty to inform should mainly focus on the medical side, coordinating with multiple parties and taking measures to improve the performance of the duty to inform, to reduce unnecessary medical disputes.
8.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
9.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
10.LncRNA SNHG14 affects the malignant biological behaviors of hepatocellular carcinoma Huh7 cells via targeting the miR-579-3p/SPARC axis
CHEN Aifang ; TIAN Xia ; HAN Zheng ; YAN Juan ; TAN Jie
Chinese Journal of Cancer Biotherapy 2025;32(9):920-926
[摘 要] 目的:探究长链非编码RNA(lncRNA)小核仁RNA宿主基因14(SNHG14)靶向miR-579-3p/富含半胱氨酸的酸性分泌蛋白(SPARC)对肝细胞癌(HCC)细胞恶性生物学行为的影响。方法:常规培养人正常肝细胞(LO2)和HCC细胞Huh7、Hep3B、HepG2,将Huh7细胞随机分为对照组、sh-NC组、sh-SNHG14组、sh-SNHG14 + anti-NC组和sh-SNHG14 + anti-miR-579-3p组,qPCR法检测细胞中SNHG14、miR-579-3p和SPARC mRNA的表达水平,双萤光素酶报告基因实验验证SNHG14与miR-579-3p及miR-579-3p与SPARC调控关系,MTT法、划痕愈合实验、Transwell实验、流式细胞术,以及WB法分别检测各组Huh7细胞的增殖、迁移、侵袭能力、凋亡,以及Huh7细胞中PCNA、E-cadherin、vimentin、SPARC蛋白的表达。结果:在HCC细胞中SNHG14、SPARC mRNA呈高表达、miR-579-3p呈低表达(均P < 0.05);SNHG14与miR-579-3p和miR-579-3p与SPARC mRNA间存在直接结合调控关系(均P < 0.05)。敲减SNHG14可明显抑制Huh7细胞的增殖、迁移、侵袭、PCNA、vimentin、SPARC mRNA及蛋白的表达(均P < 0.05),促进细胞凋亡、miR-579-3p和E-cadherin表达(均P < 0.05);抑制miR-579-3p则可部分逆转敲减SNHG14对Huh7细胞的作用(均P < 0.05)。结论:敲减SNHG14可通过靶向miR-579-3p/SPARC轴抑制Huh7细胞的恶性生物学行为,促进其凋亡;SNHG14和miR-579-3p/SPARC轴可能是HCC治疗的潜在靶点。

Result Analysis
Print
Save
E-mail