1.Relationship between levels of novel inflammatory indicators and aggressivity in patients with first-episode and recurrent schizophrenia
Ying'ao CUI ; Cheng YANG ; Yinghan TIAN ; Qingqing SHEN ; Huanzhong LIU
Sichuan Mental Health 2025;38(1):28-33
BackgroundAggressive behavior in schizophrenic patients could result in legal disputes and public safety concerns. In patients with illness episodes of different numbers, there may exist differences in the association between levels of novel inflammatory indicators and aggressivity. ObjectiveTo investigate the differences in the correlation between levels of novel inflammatory indicators and aggressivity in patients with first-episode and recurrent schizophrenia, in order to search for inflammatory biomarkers to assess aggression level in schizophrenic patients. MethodsA total of 168 schizophrenic patients were selected as subjects, who were hospitalized for acute disease onset in Chaohu Hospital of Anhui Medical University from October 2022 to April 2024 as well as met the diagnostic criteria of Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5). Patients were divided into first-episode group (n=58) and recurrent group (n=110). Meanwhile, 110 healthy controls from community who matched in age and gender with the patient group were recruited. All patients were evaluated with Modified Overt Aggression Scale (MOAS) and Positive and Negative Syndrome Scale (PANSS). All subjects went through examination of the levels of novel inflammatory indicators, including neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), platelet/lymphocyte ratio (PLR), neutrophil/high-density lipoprotein ratio (NHR), monocyte/high-density lipoprotein ratio (MHR) and platelet/high-density lipoprotein ratio (PHR). Spearman correlation analysis was adopted to investigate the correlation between levels of novel inflammatory indicators and the total score of MOAS in patients with first-episode and recurrent schizophrenia. ResultsThe levels of NLR, MLR, PLR, NHR, MHR and PHR in first-episode group were higher than those in control group (adjusted P<0.01). The levels of NLR, MLR, NHR, MHR and PHR in recurrent group were higher than those in control group (adjusted P<0.01). No significant difference was observed in the comparison in the levels of six novel inflammatory indicators between first-episode group and recurrent group (adjusted P>0.05). Spearman correlation analysis showed, the MOAS total score of recurrent group was positively correlated with the levels of NLR, MLR and PLR (r=0.234, 0.192, 0.243, P<0.05). There was no statistical significance in the correlation between MOAS total score and levels of six novel inflammatory indicators in first-episode group (P>0.05). ConclusionAmong patients with first-episode and recurrent schizophrenia, the correlation between levels of novel inflammatory indicators and aggressivity could differ. NLR, MLR and PLR might be the biomarkers for assessing aggression level in recurrent schizophrenic patients. [Funded by Anhui Provincial Natural Science Foundation (number, 2108085MH275)]
2.Time-series study on the impact of atmospheric fine particulate matter PM2.5 on short-term pulmonary function in elderly patients with chronic obstructive pulmonary disease in Taiyuan City
Yingying SHAO ; Chen WANG ; Anfeng CUI ; Haodong WANG ; Tian-e LUO
Journal of Public Health and Preventive Medicine 2025;36(1):18-22
Objective To explore the effect of fine particulate matter (PM2.5) in Taiyuan City on short-term pulmonary function in elderly patients with chronic obstructive pulmonary disease (COPD). Methods Among the 1 015 elderly COPD patients admitted to the respiratory departments of five general hospitals in Taiyuan City from December 2021 to December 2023 were retrospectively selected for research; medical records, air pollutant data and meteorological data were analyzed; the relationship between PM2.5 and lung function indicators and air pollutants was analyzed; the impact of PM2.5 on lung function and its lag effect were analyzed; the cumulative effect of PM2.5 concentration on the risk of pulmonary ventilation dysfunction was analyzed; The influence of gender and age on the relationship between PM2.5 and patients ' short-term pulmonary function was analyzed. Results PM2.5, respirable particulate matter (PM10), sulfur dioxide (SO2), carbon monoxide (CO) were negatively correlated with average temperature and average humidity (P<0.05) ; Nitrogen dioxide (NO2), ozone (O3) were negatively correlated with average temperature (P<0.05) ; There was a positive correlation among PM2.5, PM10, SO2, CO, NO2, and O3 (P<0.05) ; Elevated PM2.5 is an independent risk factor for decreased lung function and increased air pollutants (P<0.05) ; At lag0 and lag1, PM2.5 concentration was negatively correlated with lung function in a dose-response manner (P<0.05); daily average PM2.5 concentration at lag0 was a dangerous effect (P<0.05). Conclusion The impact of PM2.5 concentration on lung function has a certain time lag. An increase in PM2.5 concentrations can lead to a decline in lung function.
3.Mechanism of action of sex hormones in regulating T cell-mediated autoimmune hepatitis: A study based on the phenomenon of female bias
Haiqiang WANG ; Dasha SUN ; Han WANG ; Jiahua TIAN ; Xinyue CUI ; Ming LI
Journal of Clinical Hepatology 2025;41(4):742-747
Autoimmune hepatitis (AIH) is an autoimmune disease characterized by liver parenchymal destruction and chronic fibrosis, and it is often mediated by T cells. The pathogenesis of AIH involves multiple factors, including sex, region, environmental factors, and genetic susceptibility. A notable predisposition is observed in female individuals, and the incidence rate of AIH in female individuals is significantly higher than that in male individuals. This sex difference is associated with various factors, and sex hormones may be an important cause of the female predominance of AIH, although the specific mechanisms remain unclear. An in-depth understanding of the mechanism of action of sex hormones in the pathogenesis of AIH will help to better understand the pathogenesis of the disease and may provide important clues for developing future treatment methods and prevention strategies. This article reviews the mechanism of action of estrogen and androgen in regulating the pathogenesis of AIH by regulating T cells, in order to provide new ideas and directions for further exploring the potential role of sex hormones in the etiology of autoimmune diseases.
4.Analysis of changes in visual function before and after small incision lenticule extraction in patients with different degrees of myopia
Meiluo ZHANG ; Chunyu TIAN ; Liexi JIA ; Qinghua YANG ; Hongtao ZHANG ; Hui CUI ; Mengyu PENG ; Ruihua WEI
International Eye Science 2025;25(6):980-985
AIM: To analyze the changes in binocular visual function before and after small incision lenticule extraction(SMILE)in patients with different degrees of myopia.METHODS:A prospective non-randomized controlled study was conducted. A total of 94 patients(188 eyes)who visited the refractive outpatient department of the ophthalmology department of the General Hospital of the PLA from June 2022 to June 2023 and voluntarily chose SMILE were consecutively included. They were grouped according to the degree of myopia, including 24 cases(48 eyes)in the low myopia group(-3.00 D
5.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
6.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
7.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
8.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
9.Oligomeric proanthocyanidin ameliorates sepsis-associated renal tubular injury: involvement of oxidative stress, inflammation, PI3K/AKT and NFκκB signaling pathways
Enhui CUI ; Qijing WU ; Haiyan ZHU ; Weiqian TIAN
The Korean Journal of Physiology and Pharmacology 2025;29(2):165-178
Sepsis is a potentially fatal infectious disease that easily causes shock and numerous organ failures. The kidney is one of the most susceptible to injury. Early intervention and renal protection significantly minimize patient mortality. Oligomeric proanthocyanidin (OPC), a naturally occurring plant compound, has a high potential for renal protection. This study was aimed at exploring the potential renoprotective role of OPC in sepsis-related renal tubular injury. C57/B6 mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate sepsis-related acute kidney injury in vivo. Renal function and pathology were assessed. RNA sequencing examined OPC mechanisms against LPS-induced renal injury. Oxidative stress indicators and inflammatory cytokines in blood serum and renal tissues were evaluated. In vitro, MTT assays assess cell viability. Apoptosis cells were detected using Hoechst 33342 and propidium iodide staining. Western blot assessed PI3K/AKT and NFκB signaling pathway proteins. OPC reduced LPS-induced renal tubular injury, improved renal functions and pathological changes, restored glutathione content, superoxide dismutase activity, and catalase activity, inhibited malondialdehyde overproduction, and suppressed LPS-induced overproduction of pro-inflammatory cytokines and the decline of anti-inflammatory cytokines. OPC attenuated LPS-induced cell morphological injury, reduced cell viability loss, and recovered the changes in proteins involved in PI3K/AKT and NFκB signaling pathways in MTEC cells. OPC protects against LPSinduced renal tubular injury by counteracting oxidative stress, inhibiting inflammatory responses, activating the PI3K/AKT signaling pathway, and inhibiting the NFκB signaling pathway. It may provide a viable solution to lessen renal injury in patients with sepsis.
10. Effect Xuefu Zhuyu decoction on endothelial-to-mesenchymal transition of pulmonary artery endothelial cells and its mechanism
Zuo-Mei ZENG ; Xin-Yue WANG ; Lei-Yu TIAN ; Li-Dan CUI ; Jian GUO ; Yu-Cai CHEN
Chinese Pharmacological Bulletin 2024;40(1):155-161
Aim To investigate the effect of Xuefu Zhuyu decoction on transforming growth factor-β1(TGF-β1 ) -induced endothelial-to-mesenchymal transition (EndMT) of pulmonary microvascular endothelial cells ( PMVEC), and further analyze the mechanism related to the TGF-β1/Smad signaling pathway. Method To construct an EndMT cell model, PMVEC was treated with TGF-β1 (5 μg · L


Result Analysis
Print
Save
E-mail