1.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
		                        		
		                        			 Background:
		                        			Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction. 
		                        		
		                        			Methods:
		                        			In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days. 
		                        		
		                        			Results:
		                        			In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery. 
		                        		
		                        			Conclusion
		                        			Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis. 
		                        		
		                        		
		                        		
		                        	
2.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
		                        		
		                        			 Background:
		                        			Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction. 
		                        		
		                        			Methods:
		                        			In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days. 
		                        		
		                        			Results:
		                        			In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery. 
		                        		
		                        			Conclusion
		                        			Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis. 
		                        		
		                        		
		                        		
		                        	
3.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
		                        		
		                        			 Background:
		                        			Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction. 
		                        		
		                        			Methods:
		                        			In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days. 
		                        		
		                        			Results:
		                        			In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery. 
		                        		
		                        			Conclusion
		                        			Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis. 
		                        		
		                        		
		                        		
		                        	
4.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
		                        		
		                        			 Background:
		                        			Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction. 
		                        		
		                        			Methods:
		                        			In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days. 
		                        		
		                        			Results:
		                        			In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery. 
		                        		
		                        			Conclusion
		                        			Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis. 
		                        		
		                        		
		                        		
		                        	
5.Evidence of Inflammation in Parkinson’s Disease and Its Contribution to Synucleinopathy
Thuy Thi LAI ; Yun Joong KIM ; Hyeo-il MA ; Young Eun KIM
Journal of Movement Disorders 2022;15(1):1-14
		                        		
		                        			
		                        			 Accumulation of alpha-synuclein (αSyn) protein in neurons is a renowned pathological hallmark of Parkinson’s disease (PD). In addition, accumulating evidence indicates that activated inflammatory responses are involved in the pathogenesis of PD. Thus, achieving a better understanding of the interaction between inflammation and synucleinopathy in relation to the PD process will facilitate the development of promising disease-modifying therapies. In this review, the evidence of inflammation in PD is discussed, and human, animal, and laboratory studies relevant to the relationship between inflammation and αSyn are explored as well as new therapeutic targets associated with this relationship. 
		                        		
		                        		
		                        		
		                        	
6.Melanin-embedded materials effectively remove hexavalent chromium (Cr) from aqueous solution.
An Manh CUONG ; Nguyen Thi LE NA ; Pham Nhat THANG ; Trinh Ngoc DIEP ; Ly Bich THUY ; Nguyen Lai THANH ; Nguyen Dinh THANG
Environmental Health and Preventive Medicine 2018;23(1):9-9
		                        		
		                        			BACKGROUND:
		                        			Currently, it is recognized that water polluted with toxic heavy metal ions may cause serious effects on human health. Therefore, the development of new materials for effective removal of heavy metal ions from water is still a widely important area. Melanin is being considered as a potential material for removal of heavy metal from water.
		                        		
		                        			METHODS:
		                        			In this study, we synthesized two melanin-embedded beads from two different melanin powder sources and named IMB (Isolated Melanin Bead originated from squid ink sac) and CMB (Commercial Melanin Bead originated from sesame seeds). These beads were of globular shape and 2-3 mm in diameter. We investigated and compared the sorption abilities of these two bead materials toward hexavalent-chromium (Cr) in water. The isotherm sorption curves were established using Langmuir and Freundlich models in the optimized conditions of pH, sorption time, solid/liquid ratio, and initial concentration of Cr. The FITR analysis was also carried out to show the differences in surface properties of these two beads.
		                        		
		                        			RESULTS:
		                        			The optimized conditions for isotherm sorption of Cr on IMB/CMB were set at pH values of 2/2, sorption times of 90/300 min, and solid-liquid ratios of 10/20 mg/mL. The maximum sorption capacities calculated based on the Langmuir model were 19.60 and 6.24 for IMB and CMB, respectively. However, the adsorption kinetic of Cr on the beads fitted the Freundlich model with R values of 0.992 for IMB and 0.989 for CMB. The deduced Freundlich constant, 1/n, in the range of 0.2-0.8 indicated that these beads are good adsorption materials. In addition, structure analysis data revealed great differences in physical and chemical properties between IMB and CMB. Interestingly, FTIR analysis results showed strong signals of -OH (3295.35 cm) and -C=O (1608.63 cm) groups harboring on the IMB but not CMB. Moreover, loading of Cr on the IMB caused a shift of broad peaks from 3295.35 cm and 1608.63 cm to 3354.21 cm and 1597.06 cm, respectively, due to -OH and -C=O stretching.
		                        		
		                        			CONCLUSIONS
		                        			Taken together, our study suggests that IMB has great potential as a bead material for the elimination of Cr from aqueous solutions and may be highly useful for water treatment applications.
		                        		
		                        		
		                        		
		                        			Adsorption
		                        			;
		                        		
		                        			Chromium
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Kinetics
		                        			;
		                        		
		                        			Melanins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Waste Disposal, Fluid
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Water Pollutants, Chemical
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Water Pollution, Chemical
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Water Purification
		                        			;
		                        		
		                        			methods
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail