6.Improving appendix cancer prediction with SHAP-based feature engineering for machine learning models: a prediction study
The Ewha Medical Journal 2025;48(2):e31-
Purpose:
This study aimed to leverage Shapley additive explanation (SHAP)-based feature engineering to predict appendix cancer. Traditional models often lack transparency, hindering clinical adoption. We propose a framework that integrates SHAP for feature selection, construction, and weighting to enhance accuracy and clinical relevance.
Methods:
Data from the Kaggle Appendix Cancer Prediction dataset (260,000 samples, 21 features) were used in this prediction study conducted from January through March 2025, in accordance with TRIPOD-AI guidelines. Preprocessing involved label encoding, SMOTE (synthetic minority over-sampling technique) to address class imbalance, and an 80:20 train-test split. Baseline models (random forest, XGBoost, LightGBM) were compared; LightGBM was selected for its superior performance (accuracy=0.8794). SHAP analysis identified key features and guided 3 engineering steps: selection of the top 15 features, construction of interaction-based features (e.g., chronic severity), and feature weighting based on SHAP values. Performance was evaluated using accuracy, precision, recall, and F1-score.
Results:
Four LightGBM model configurations were evaluated: baseline (accuracy=0.8794, F1-score=0.8691), feature selection (accuracy=0.8968, F1-score=0.8860), feature construction (accuracy=0.8980, F1-score=0.8872), and feature weighting (accuracy=0.8986, F1-score=0.8877). SHAP-based engineering yielded performance improvements, with feature weighting achieving the highest precision (0.9940). Key features (e.g., red blood cell count and chronic severity) contributed to predictions while maintaining interpretability.
Conclusion
The SHAP-based framework substantially improved the accuracy and transparency of appendix cancer predictions using LightGBM (F1-score=0.8877). This approach bridges the gap between predictive power and clinical interpretability, offering a scalable model for rare disease prediction. Future validation with real-world data is recommended to ensure generalizability.
8.Feature-based ensemble modeling for addressing diabetes data imbalance using the SMOTE, RUS, and random forest methods: a prediction study
The Ewha Medical Journal 2025;48(2):e32-
Purpose:
This study developed and evaluated a feature-based ensemble model integrating the synthetic minority oversampling technique (SMOTE) and random undersampling (RUS) methods with a random forest approach to address class imbalance in machine learning for early diabetes detection, aiming to improve predictive performance.
Methods:
Using the Scikit-learn diabetes dataset (442 samples, 10 features), we binarized the target variable (diabetes progression) at the 75th percentile and split it 80:20 using stratified sampling. The training set was balanced to a 1:2 minority-to-majority ratio via SMOTE (0.6) and RUS (0.66). A feature-based ensemble model was constructed by training random forest classifiers on 10 two-feature subsets, selected based on feature importance, and combining their outputs using soft voting. Performance was compared against 13 baseline models, using accuracy and area under the curve (AUC) as metrics on the imbalanced test set.
Results:
The feature-based ensemble model and balanced random forest both achieved the highest accuracy (0.8764), followed by the fully connected neural network (0.8700). The ensemble model had an excellent AUC (0.9227), while k-nearest neighbors had the lowest accuracy (0.8427). Visualizations confirmed its superior discriminative ability, especially for the minority (high-risk) class, which is a critical factor in medical contexts.
Conclusion
Integrating SMOTE, RUS, and feature-based ensemble learning improved classification performance in imbalanced diabetes datasets by delivering robust accuracy and high recall for the minority class. This approach outperforms traditional resampling techniques and deep learning models, offering a scalable and interpretable solution for early diabetes prediction and potentially other medical applications.
9.The role and prospects of telemedicine in the treatment of heart failure patients: a narrative review
The Ewha Medical Journal 2025;48(2):e26-
Heart failure (HF) represents a significant global health burden characterized by high morbidity, mortality, and healthcare utilization. Traditional in-person care models face considerable limitations in providing continuous monitoring and timely interventions for HF patients. Telemedicine—defined as the remote delivery of healthcare via information and communication technologies—has emerged as a promising solution to these challenges. This review examines the evolution, current applications, clinical evidence, limitations, and future directions of telemedicine in HF management. Evidence from randomized controlled trials and meta-analyses indicates that telemedicine interventions can improve guideline-directed medical therapy implementation, reduce hospitalization rates, improve patient engagement, and potentially decrease mortality among HF patients. Remote monitoring systems that track vital signs, symptoms, and medication adherence allow for the early detection of clinical deterioration, enabling timely interventions before decompensation occurs. Despite these benefits, telemedicine implementation faces several barriers, including technological limitations, reimbursement issues, digital literacy gaps, and challenges in integrating workflows. Future directions include developing standardized guidelines, designing patient-centered technologies, and establishing hybrid care models that combine virtual and in-person approaches. As healthcare systems worldwide seek more efficient and effective strategies for managing the growing population of individuals with HF, telemedicine offers a solution that may significantly improve patient outcomes and quality of life.
10.Status of human rights violations and trauma among North Korean defectors: a cross-sectional study
So Hee LEE ; Won Woong LEE ; Haewoo LEE ; Jin Yong JUN ; Jin-Won NOH
The Ewha Medical Journal 2025;48(2):e28-
Purpose:
This study aimed to identify the types of human rights violations and the associated psychological trauma experienced by North Korean defectors. It also examined the impact of trauma on the defectors’ interpersonal relationships, employment, and overall quality of life, while evaluating existing psychological support policies to suggest potential improvements.
Methods:
A multidisciplinary research team conducted an observational survey and in-depth interviews with approximately 300 North Korean defectors residing in South Korea from June to September 2017. Standardized measurement tools, including the Post-Traumatic Stress Disorder (PTSD) Checklist (PCL-5), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder Scale-7 (GAD-7), and Short Form-8 Health Survey (SF-8), were employed. Statistical analyses consisted of frequency analysis, cross-tabulation, factor analysis, and logistic regression.
Results:
The findings revealed a high prevalence of human rights violations, such as public executions (82%), forced self-criticism (82.3%), and severe starvation or illness (62.7%). Additionally, there were elevated rates of PTSD (56%), severe depression (28.3%), anxiety (25%), and insomnia (23.3%). Defectors who resided in China before entering South Korea reported significantly worse mental health outcomes and a lower quality of life. Moreover, trauma was strongly and negatively correlated with social adjustment, interpersonal relationships, employment stability, and overall well-being.
Conclusion
An urgent revision of existing policies is needed to incorporate specialized, trauma-informed care infrastructures within medical institutions. Furthermore, broad societal education to reduce stigma and enhance integration efforts is essential to effectively support the psychological well-being and social integration of North Korean defectors.

Result Analysis
Print
Save
E-mail