1.Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells
Thom Thi VU ; Peter DIETERICH ; Thu Thi VU ; Andreas DEUSSEN
The Korean Journal of Physiology and Pharmacology 2019;23(5):345-356
Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, 100 µM) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to 50 µM. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated Ca²⁺-transient. This effect was preserved in the presence of BAPTA (10 and 20 µM) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane (75 µM) to inhibit store-operated calcium channel or thapsigargin (2 µM) to delete calcium store. In addition, DHA (12 µM) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a Ca²⁺ activated mode to a preferentially controlled phosphorylation mode.
Adenosine Triphosphate
;
Adenosine
;
Blotting, Western
;
Calcium Channels
;
Calcium
;
Endothelial Cells
;
Humans
;
Nitric Oxide Synthase Type III
;
Phosphorylation
;
Thapsigargin
;
Umbilical Veins
2.Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm.
Diana ITZHAKOV ; Yeshayahu NITZAN ; Haim BREITBART
Asian Journal of Andrology 2019;21(4):337-344
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l-1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02-0.1 μmol l-1), whereas higher concentrations (>5 μmol l-1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
8-Bromo Cyclic Adenosine Monophosphate/pharmacology*
;
Acrosome/metabolism*
;
Acrosome Reaction/drug effects*
;
Calcimycin/pharmacology*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors*
;
Exocytosis/drug effects*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Humans
;
Male
;
Protein Kinase Inhibitors/pharmacology*
;
Signal Transduction/drug effects*
;
Spermatozoa/metabolism*
;
Thapsigargin/pharmacology*
3.Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells.
Dong Kyu LEE ; Young Sil MIN ; Seong Su YOO ; Hyun Sub SHIM ; Sun Young PARK ; Uy Dong SOHN
Biomolecules & Therapeutics 2018;26(6):546-552
A comprehensive collection of proteins senses local changes in intracellular Ca²⁺ concentrations ([Ca²⁺](i) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular Ca²⁺ concentrations in cat esophageal smooth muscle cells. To measure [Ca²⁺](i) levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in [Ca²⁺](i) in the cells. Pretreatment with EGTA, an extracellular Ca²⁺ chelator, decreased the S1P-induced increase in [Ca²⁺](i), and an L-type Ca²⁺-channel blocker, nimodipine, decreased the effect of S1P. This indicates that Ca²⁺ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an InsP₃ receptor blocker, the S1P-evoked increase in [Ca²⁺](i) was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of G(i)-protein, suppressed the increase in [Ca²⁺](i) evoked by S1P. These results suggest that the S1P-induced increase in [Ca²⁺](i) in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of Ca²⁺ from the InsP₃-sensitive Ca²⁺ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular Ca²⁺ via the L type Ca²⁺ channel, which was dependent on activation of the S1P₄ receptor coupled to PTX-sensitive G(i) protein, via phospholipase C-mediated Ca²⁺ release from the InsP₃-sensitive Ca²⁺ pool in cat esophageal smooth muscle cells.
Animals
;
Calcium
;
Cats*
;
Egtazic Acid
;
Fura-2
;
Methods
;
Microscopy, Fluorescence
;
Muscle Contraction
;
Muscle, Smooth*
;
Myocytes, Smooth Muscle*
;
Nimodipine
;
Pertussis Toxin
;
Phospholipases
;
Sarcoplasmic Reticulum
;
Thapsigargin
;
Type C Phospholipases
4.Thapsigargin Increases IL-2 Production in T Cells at Nanomolar Concentrations.
Ki Hyang KIM ; Sang Hyun KIM ; Ho Hyun JUNG ; Jun Hyeok MOON ; Seong Un JEONG ; Kyeongae YU ; Chong Kil LEE
Immune Network 2018;18(4):e26-
Thapsigargin (TGN) is a potent and selective inhibitor of sarco-endoplasmic Ca²⁺-ATPase, leading to rapid elevation of cytoplasmic Ca2+ concentration. Previous reports have shown that TGN increases the production of various cytokines from macrophages and dendritic cells. Here, we examine the effects of TGN on murine T cells. Nanomolar concentrations of TGN are a significant inducer of IL-2 production with full activity at 50 nM. Micromolar concentrations of TGN, however, are inhibitory to IL-2 production and T cell proliferation. The IL-2 production-inducing activity of TGN is much more prominent when T cells are primed with concanavalin A or anti-CD3 mAb, and is due to the increase of cytoplasmic Ca²⁺ concentration. TGN at 50 nM does not affect interferon-gamma or IL-4 production from T cells. Thus, the present study shows that low nanomolar concentrations of TGN could be useful in potentiating IL-2 production from antigen-primed T cells.
Cell Proliferation
;
Concanavalin A
;
Cytokines
;
Cytoplasm
;
Dendritic Cells
;
Interferon-gamma
;
Interleukin-2*
;
Interleukin-4
;
Macrophages
;
T-Lymphocytes*
;
Tetradecanoylphorbol Acetate
;
Thapsigargin*
5.Effects of ATP on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Small Intestine
Il Koo PARK ; Jin Ho KIM ; Chan Guk PARK ; Man Yoo KIM ; Shankar Prasad PARAJULI ; Chan Sik HONG ; Seok CHOI ; Jae Yeoul JUN
Chonnam Medical Journal 2018;54(1):63-71
Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5′-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca²⁺ ([Ca²⁺]ᵢ) imaging. External ATP dose-dependently depolarized the resting membrane and produced tonic inward pacemaker currents, and these effects were antagonized by suramin, a purinergic P2 receptor antagonist. ATP-induced effects on pacemaker currents were suppressed by an external Na⁺-free solution and inhibited by the nonselective cation channel blockers, flufenamic acid and niflumic acid. The removal of external Ca²⁺ or treatment with thapsigargin (inhibitor of Ca²⁺ uptake into endoplasmic reticulum) inhibited the ATP-induced effects on pacemaker currents. Spontaneous [Ca²⁺]ᵢ oscillations were enhanced by external ATP. These results suggest that external ATP modulates pacemaker activity by activating nonselective cation channels via external Ca²⁺ influx and [Ca²⁺]ᵢ release from the endoplasmic reticulum. Thus, it seems that activating the purinergic P2 receptor may modulate GI motility by acting on ICCs in the small intestine.
Adenosine
;
Adenosine Triphosphate
;
Animals
;
Endoplasmic Reticulum
;
Flufenamic Acid
;
Interstitial Cells of Cajal
;
Intestine, Small
;
Membranes
;
Mice
;
Muscle, Smooth
;
Niflumic Acid
;
Pacemaker, Artificial
;
Receptors, Purinergic
;
Receptors, Purinergic P2
;
Suramin
;
Thapsigargin
6.Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons
International Journal of Oral Biology 2018;43(4):209-216
Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of O₂˙⁻ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DLpenicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.
Action Potentials
;
Animals
;
Calcium
;
Excitatory Postsynaptic Potentials
;
Humans
;
Membranes
;
Neurons
;
Nitric Oxide
;
Nitrogen
;
Oxidative Stress
;
Posterior Horn Cells
;
Rats
;
Reactive Oxygen Species
;
Spinal Cord
;
Substantia Gelatinosa
;
Superoxides
;
Synaptic Transmission
;
Thapsigargin
;
Tissue Donors
;
Xanthine
;
Xanthine Oxidase
7.Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells.
Mi Na YOON ; Dong Kwan KIM ; Se Hoon KIM ; Hyung Seo PARK
The Korean Journal of Physiology and Pharmacology 2017;21(2):233-239
Intracellular calcium (Ca²⁺) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H₂O₂) on intracellular Ca²⁺ accumulation in mouse pancreatic acinar cells. Perfusion of H₂O₂ at 300 µM resulted in additional elevation of intracellular Ca²⁺ levels and termination of oscillatory Ca²⁺ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca²⁺. Antioxidants, catalase or DTT, completely prevented H₂O₂-induced additional Ca²⁺ increase and termination of Ca²⁺ oscillation. In Ca²⁺-free medium, H₂O₂ still enhanced CCh-induced intracellular Ca²⁺ levels and thapsigargin (TG) mimicked H₂O₂-induced cytosolic Ca²⁺ increase. Furthermore, H₂O₂-induced elevation of intracellular Ca²⁺ levels was abolished under sarco/endoplasmic reticulum Ca²⁺ ATPase-inactivated condition by TG pretreatment with CCh. H₂O₂ at 300 µM failed to affect store-operated Ca²⁺ entry or Ca²⁺ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca²⁺ uniporter blocker, failed to attenuate H₂O₂-induced intracellular Ca²⁺ elevation. These results provide evidence that excessive generation of H₂O₂ in pathological conditions could accumulate intracellular Ca²⁺ by attenuating refilling of internal Ca²⁺ stores rather than by inhibiting Ca²⁺ extrusion to extracellular fluid or enhancing Ca²⁺ mobilization from extracellular medium in mouse pancreatic acinar cells.
Acinar Cells*
;
Animals
;
Antioxidants
;
Calcium*
;
Carbachol
;
Catalase
;
Cell Membrane
;
Cytosol
;
Extracellular Fluid
;
Hydrogen Peroxide*
;
Hydrogen*
;
Ion Transport
;
Mice*
;
Pancreatitis
;
Perfusion
;
Reactive Oxygen Species
;
Reticulum
;
Ruthenium Red
;
Thapsigargin
8.Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis.
Song In KIM ; Hee Jae LEE ; Sung Soo KIM ; Yong Soo KWON ; Wanjoo CHUN
The Korean Journal of Physiology and Pharmacology 2016;20(4):387-397
Neurofi brillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active GSK3β (GSK3β-S9A) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin-induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin signifi cantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.
Alzheimer Disease
;
Apoptosis
;
Calcium*
;
Carrier Proteins
;
Endoplasmic Reticulum
;
Endoplasmic Reticulum Stress
;
Homeostasis*
;
Pathology
;
Thapsigargin
;
Yeasts
9.Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion.
Nutrition Research and Practice 2015;9(2):117-122
BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.
Actins
;
Apoptosis
;
Bacteria
;
Cholera Toxin
;
Curcuma
;
Curcumin*
;
Electrophysiology
;
Endoplasmic Reticulum
;
Epithelial Cells
;
Humans
;
Intestines*
;
Membranes
;
NF-kappa B
;
Skeleton
;
Thapsigargin
;
Tight Junctions
10.Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons.
International Journal of Oral Biology 2015;40(4):211-216
Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium (BKca) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of Ca2+ that induces Ca2+-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective BKCa channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove Ca2+ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through BKca channels, which are activated by intracellular Ca2+ increase via activation of RyR of Ca2+ stores.
Animals
;
Calcium*
;
Charybdotoxin
;
Endoplasmic Reticulum
;
Humans
;
Membranes
;
Neurons*
;
Nitric Oxide
;
Nitroprusside
;
Potassium
;
Rats*
;
Ryanodine Receptor Calcium Release Channel
;
Ryanodine*
;
Substantia Gelatinosa*
;
Thapsigargin
;
Tissue Donors

Result Analysis
Print
Save
E-mail