1.Dermatophagoides farinae induces conjunctival epithelial cell damage to promote neutrophil migration and neutrophil extracellular traps formation.
Meili WU ; Ru YAN ; Wenjun ZHAO
Chinese Journal of Schistosomiasis Control 2023;35(3):271-278
OBJECTIVE:
To investigate the mechanisms underlying allergic conjunctivitis caused by conjunctival epithelial cell damage, neutrophil migration and neutrophil extracellular traps (NETs) formation induced by crude extracts of Dermatophagoides farinae mite (CDM).
METHODS:
Human conjunctival epithelial cells were stimulated with 500, 1 000, 2 000, 4 000 ng/mL, and the expression levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and IL-8 were detected using quantitative real-time PCR (qPCR) assay and enzyme-linked immunosorbent assay (ELISA). The culture supernatant of human conjunctival epithelial cells was collected and co-cultured with neutrophils. Neutrophil migration was measured using Transwell migration assay, and the expression of NETs markers myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) was quantified using immunofluorescence staining. Neutrophils were stimulated with phorbol 12-myristate 13-acetate (PMA), and then NETs were collected for treatment of human conjunctival epithelial cells. Cell apoptosis was detected using flow cytometry, and the levels of IL-6, TNF-α, IFN-γ and IL-8 were measured in the cell culture supernatant using ELISA.
RESULTS:
Treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL up-regulated IL-6, TNF-α, IFN-γ and IL-8 expression in human conjunctival epithelial cells. Following treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL, the culture supernatant of human conjunctival epithelial cells promoted neutrophil migration and induced increases in the staining intensity of MPO and CitH3. In addition, increased NETs triggered the apoptosis of human conjunctival epithelial cells and IL-6, TNF-α, IFN-γ and IL-8 secretion in the culture supernatant of human conjunctival epithelial cells.
CONCLUSIONS
CDM induces human conjunctival epithelial cell damages, thereby promoting neutrophil migration and NETs formation, while the release of NETs further aggravates human conjunctival epithelial cell damages.
Animals
;
Humans
;
Extracellular Traps
;
Neutrophils
;
Interleukin-8/metabolism*
;
Dermatophagoides farinae
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Epithelial Cells
;
Interferon-gamma/metabolism*
;
Tetradecanoylphorbol Acetate/pharmacology*
2.The characteristics of neutrophil extracellular traps produced by all-trans retinoic acid-induced dHL-60 under PMA stimulation.
Wang LIU ; Jinhua FANG ; Tiantian HONG ; Jiaqi HUANG ; Baisong ZHAO ; Ying FANG ; Jianhua WU ; Jiangguo LIN
Journal of Biomedical Engineering 2022;39(5):909-918
Extracellular traps released by neutrophils (neutrophil extracellular traps, NETs) are a double-edged sword, and understanding the mechanism of NET formation is of great significance for disease treatment. However, the short lifespan, the large individual differences, and the inability to perform gene editing render it difficult to decipher NET formation using neutrophils. It is necessary to find a model cell to replace neutrophils to study the mechanism of NET formation. In this study, we used different concentrations (0, 0.1, 1, and 10 μmol/L) of all-trans retinoic acid (ATRA) to differentiate HL-60 cells for different days (1, 3, 5, and 7 days). By detecting the cell viability and nuclear morphology of cells, we confirmed that HL-60 cells were differentiated to neutrophil-like cells (dHL-60) after treated with ATRA for at least 5 days. Using immunofluorescence staining to detect the formation of NETs, we demonstrated that dHL-60 cells differentiated for 5 days with 1 μmol/L ATRA could generate NETs comparable to those produced by neutrophils upon phorbol 12-myristate 13-acetate (PMA) stimulation, without histone H3 citrullination. Furthermore, the formation of NETs by dHL-60 cells were NADPH-dependent and PAD4-independent, consistent with neutrophils. Taken together, these observations suggest that dHL-60 cells differentiated with 1 μmol/L ATRA for 5 days can be used as a model cell for neutrophils to study the mechanism of NET formation.
Humans
;
Extracellular Traps
;
Tetradecanoylphorbol Acetate/pharmacology*
;
Neutrophils
;
HL-60 Cells
;
Tretinoin/pharmacology*
3.Thapsigargin Increases IL-2 Production in T Cells at Nanomolar Concentrations.
Ki Hyang KIM ; Sang Hyun KIM ; Ho Hyun JUNG ; Jun Hyeok MOON ; Seong Un JEONG ; Kyeongae YU ; Chong Kil LEE
Immune Network 2018;18(4):e26-
Thapsigargin (TGN) is a potent and selective inhibitor of sarco-endoplasmic Ca²⁺-ATPase, leading to rapid elevation of cytoplasmic Ca2+ concentration. Previous reports have shown that TGN increases the production of various cytokines from macrophages and dendritic cells. Here, we examine the effects of TGN on murine T cells. Nanomolar concentrations of TGN are a significant inducer of IL-2 production with full activity at 50 nM. Micromolar concentrations of TGN, however, are inhibitory to IL-2 production and T cell proliferation. The IL-2 production-inducing activity of TGN is much more prominent when T cells are primed with concanavalin A or anti-CD3 mAb, and is due to the increase of cytoplasmic Ca²⁺ concentration. TGN at 50 nM does not affect interferon-gamma or IL-4 production from T cells. Thus, the present study shows that low nanomolar concentrations of TGN could be useful in potentiating IL-2 production from antigen-primed T cells.
Cell Proliferation
;
Concanavalin A
;
Cytokines
;
Cytoplasm
;
Dendritic Cells
;
Interferon-gamma
;
Interleukin-2*
;
Interleukin-4
;
Macrophages
;
T-Lymphocytes*
;
Tetradecanoylphorbol Acetate
;
Thapsigargin*
4.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry
5.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity
6.In silico target fishing for the potential bioactive components contained in Huanglian Jiedu Tang (HLJDD) and elucidating molecular mechanisms for the treatment of sepsis.
Shi-Tang MA ; Cheng-Tao FENG ; Guo-Liang DAI ; Yue SONG ; Guo-Liang ZHOU ; Xiao-Lin ZHANG ; Cheng-Gui MIAO ; Hao YU ; Wen-Zheng JU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):30-40
The present study was designed to target fish for potential bioactive components contained in a Huang Lian Jie Du decoction (HLJDD) and identify the underlying mechanisms of action for the treatment of sepsis at the molecular level. he bioactive components database of HLJDD was constructed and the sepsis-associated targets were comprehensively investigated. The 3D structures of the PAFR and TXA2R proteins were established using the homology modelling (HM) method, and the molecular effects for sepsis treatment were analysed by comparing the bioactive components database and the sepsis targets using computational biology methods. The results of the screening were validated with biological testing against the human oral epidermal carcinoma cell line KB in vitro. We found that multiple bioactive compounds contained in the HLJDD interacted with multiple targets. We also predicted the promising compound leads for sepsis treatment, and the first 28 compounds were characterized. Several compounds, such as berberine, berberrubine and epiberberine, dose-dependently inhibited PGE2 production in human KB cells, and the effects were similar in the presence or absence of TPA. This study demonstrates a novel approach to identifying natural chemical compounds as new leads for the treatment of sepsis.
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacokinetics
;
Berberine
;
analogs & derivatives
;
pharmacokinetics
;
Dinoprostone
;
biosynthesis
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacokinetics
;
Humans
;
KB Cells
;
Platelet Membrane Glycoproteins
;
drug effects
;
Protein Transport
;
Receptors, G-Protein-Coupled
;
drug effects
;
Receptors, Thromboxane A2, Prostaglandin H2
;
drug effects
;
Sepsis
;
drug therapy
;
metabolism
;
Tetradecanoylphorbol Acetate
;
pharmacokinetics
7.Relaxin inhibit cardiac fibrosis induced by phorbol 12-myristate 13-acetate.
Yu Peng WANG ; Ping WANG ; Lei DONG ; Hui CHEN ; Yong Quan WU ; Hong Wei LI ; Min LI
Biomedical and Environmental Sciences 2014;27(2):138-141
Relaxin is known to inhibit cardiac fibrosis. However, it is unclear whether relaxin could regulate the effects of Phorbol 12-myristate 13-acetate (PMA, PKC activator) on cardiac fibrosis. So the influence of relaxin on the cell proliferation and collagen expression induced by PMA in cultured cardiac fibroblasts was studied. It showed that PMA significantly increased cardiac fibroblasts proliferation, Type I pro-collagen protein expression, Type I pro-collagen mRNA expression, and rhRLX absolutely significantly decreased PMA induced effects on cardiac fibroblasts proliferation and Type I pro-collagen expressions, indicating that relaxin could inhibit cardiac fibrosis induced by PMA.
Animals
;
Animals, Newborn
;
Cells, Cultured
;
Fibroblasts
;
pathology
;
Fibrosis
;
Heart Diseases
;
chemically induced
;
pathology
;
prevention & control
;
Rats
;
Rats, Sprague-Dawley
;
Relaxin
;
therapeutic use
;
Tetradecanoylphorbol Acetate
;
analogs & derivatives
8.Effects of As2O3 in combination with TPA on K562 cells.
Fang-Fang YUAN ; Xu-Hua ZHANG ; Rui-Hua MI ; Rui-Hua FAN ; Qing-Song YIN ; Xu-Dong WEI
Journal of Experimental Hematology 2014;22(4):943-949
This study was aimed to investigate the effects of arsenic trioxide (As2O3) combined with TPA on cell cycle, cell differentiation and apoptosis of K562 cell line, and their possible mechanisms. K562 cells were treated with 200 nmol/L TPA, 2 µmol/L As2O3 alone and 200 nmol/L TPA combined with 2 µmol/L As2O3. The proliferative inhibition rates were determined with CCK-8. Annexin V and agarose gel electrophoresis were adopted to detect apoptosis. Colony formation test was used to determine the colony-formation efficiency. Flow cytometry was used to detect the cell differentiation and cell cycle changes. Western blot was employed to detect the expression of P38 and p-P38 proteins. The results showed that combination treatment had synergistic effects on the proliferative inhibition and apoptosis, which were much higher than those treated alone. As2O3 could decrease the colony formation ability of K562 cells. The cells treated with both TPA and As2O3 expressed far more CD11b antigens compared with cells exposed to As2O3 alone. K562 cells treated with TPA were arrested in G1 phase compared with the control group, As2O3 increased the percentage of K562 cells in the G2 phase. The combination treatment increased the expression of p-P38 of K562 cells compared with the cells exposed As2O3 alone. It is concluded that TPA can enhance the effect of As2O3 on inducing apoptosis and adjusting cell cycle , which will expect to provide a new therapeutic program.
Apoptosis
;
drug effects
;
Arsenicals
;
pharmacology
;
Cell Cycle
;
drug effects
;
Drug Synergism
;
Humans
;
K562 Cells
;
Oxides
;
pharmacology
;
Tetradecanoylphorbol Acetate
;
pharmacology
9.Inhibitory effect of arctigenin on lymphocyte activation stimulated with PMA/ionomycin.
Cheng-Hong SUN ; Xin-Qiang LAI ; Li ZHANG ; Jing-Chun YAO ; Yong-Xia GUAN ; Li-Hong PAN ; Ying YAN
Acta Pharmaceutica Sinica 2014;49(4):482-489
This study investigated the effect of arctigenin (Arc) on the cell activation, cytokines expression, proliferation, and cell-cycle distribution of mouse T lymphocytes. Mouse lymphocytes were prepared from lymph node and treated with Phorbol-12-myristate-13-acetate (PMA)/Ionimycin (Ion) and/or Arc. CD69, CD25, cytokines, proliferation and cell cycle were assayed by flow cytometry. The results showed that, at concentrations of less than 1.00 micromol x L(-1), Arc expressed non-obvious cell damage to cultured lymphocytes, however, it could significantly down-regulate the expression of CD69 and CD25, as well as TNF-alpha, IFN-gamma, IL-2, IL-4, IL-6 and IL-10 on PMA/Ion stimulated lymphocytes. At the same time, Arc could also inhibit the proliferation of PMA/Ion-activated lymphocytes and exhibited lymphocyte G 0/G1 phase cycle arrest. These results suggest that Arc possesses significant anti-inflammatory effects that may be mediated through the regulation of cell activation, cytokines expression and cell proliferation.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Antigens, CD
;
metabolism
;
Antigens, Differentiation, T-Lymphocyte
;
metabolism
;
Arctium
;
chemistry
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cytokines
;
metabolism
;
Female
;
Furans
;
isolation & purification
;
pharmacology
;
Interferon-gamma
;
metabolism
;
Interleukin-10
;
metabolism
;
Interleukin-2
;
metabolism
;
Interleukin-2 Receptor alpha Subunit
;
metabolism
;
Interleukin-4
;
metabolism
;
Interleukin-6
;
metabolism
;
Ionomycin
;
pharmacology
;
Lectins, C-Type
;
metabolism
;
Lignans
;
isolation & purification
;
pharmacology
;
Lymphocyte Activation
;
drug effects
;
Mice
;
Mice, Inbred BALB C
;
Plants, Medicinal
;
chemistry
;
T-Lymphocytes
;
cytology
;
drug effects
;
immunology
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Effect of Betulinic Acid on MUC5AC and MUC5B Expression in Airway Epithelial Cells.
Hoon sung KIM ; Yoon Seok CHOI ; Jun Hyeok LEE ; Na Kyung PARK ; Chang Hwi PARK ; Young Ha LEE ; Gui Ok KIM ; Si Youn SONG ; Chang Hoon BAE ; Seung Ho LEE ; Yong Woon KIM ; Yong Dae KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2014;57(8):526-532
BACKGROUND AND OBJECTIVES: MUC5AC and MUC5B are representative secretory mucin genes in the human airway, whose expressions are increased by a variety of inflammatory mediators. Betulinic acid, a naturally occurring pentacyclic triterpenoid, is known to have an anti-inflammatory property. However, the effects of betulinic acid on mucin secretion of airway epithelial cells still have not been reported. Therefore, in this study, the effect of betulinic acid on inflammatory mediators-induced MUC5AC and MUC5B expressions was investigated in human airway epithelial cells. SUBJECTS AND METHOD: In the mucin-producing human NCI-H292 airway epithelial cells, the effects of betulinic acid on interleukin-1beta (IL-1beta)-, lipopolysaccharide (LPS)-, and phorbol myristate acetate (PMA)-induced MUC5AC and MUC5B expressions were analyzed by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Betulinic acid attenuated IL-1beta-, LPS-, and PMA-induced MUC5B mRNA and glycoprotein expression in NCI-H292 cells. On the other hand, betulinic acid did not attenuate IL-1beta-, and LPS-, but induced PMA-induced MUC5AC mRNA and glycoprotein expressions in NCI-H292 cells. CONCLUSION: These results suggest that betulinic acid attenuates IL-1beta-, LPS-, and PMA-induced MUC5B expression in the airway epithelial cells. Therefore, betulinic acid may modulate a control of mucus-hypersecretion in airway inflammatory diseases.
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells*
;
Glycoproteins
;
Hand
;
Humans
;
Interleukin-1beta
;
Mucins
;
RNA, Messenger
;
Tetradecanoylphorbol Acetate

Result Analysis
Print
Save
E-mail