1.Bis (2-butoxyethyl) Phthalate Delays Puberty Onset by Increasing Oxidative Stress and Apoptosis in Leydig Cells in Rats.
Miao Qing LIU ; Hai Qiong CHEN ; Hai Peng DAI ; Jing Jing LI ; Fu Hong TIAN ; Yi Yan WANG ; Cong De CHEN ; Xiao Heng LI ; Jun Wei LI ; Zhong Rong LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(1):60-75
OBJECTIVE:
This study investigated the effects of bis (2-butoxyethyl) phthalate (BBOP) on the onset of male puberty by affecting Leydig cell development in rats.
METHODS:
Thirty 35-day-old male Sprague-Dawley rats were randomly allocated to five groups mg/kg bw per day that were gavaged for 21 days with BBOP at 0, 10, 100, 250, or 500 mg/kg bw per day. The hormone profiles; Leydig cell morphological metrics; mRNA and protein levels; oxidative stress; and AKT, mTOR, ERK1/2, and GSK3β pathways were assessed.
RESULTS:
BBOP at 250 and/or 500 mg/kg bw per day decreased serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels mg/kg bw per day (P < 0.05). BBOP at 500 mg/kg bw per day decreased Leydig cell number mg/kg bw per day and downregulated Cyp11a1, Insl3, Hsd11b1, and Dhh in the testes, and Lhb and Fshb mRNAs in the pituitary gland (P < 0.05). The malondialdehyde content in the testis significantly increased, while Sod1 and Sod2 mRNAs were markedly down-regulated, by BBOP treatment at 250-500 mg/kg bw per day (P < 0.05). Furthermore, BBOP at 500 mg/kg bw per day decreased AKT1/AKT2, mTOR, and ERK1/2 phosphorylation, and GSK3β and SIRT1 levels mg/kg bw per day (P < 0.05). Finally, BBOP at 100 or 500 μmol/L induced ROS and apoptosis in Leydig cells after 24 h of treatment in vitro (P < 0.05).
CONCLUSION:
BBOP delays puberty onset by increasing oxidative stress and apoptosis in Leydig cells in rats.
UNLABELLED
The graphical abstract is available on the website www.besjournal.com.
Rats
;
Male
;
Animals
;
Leydig Cells/metabolism*
;
Testosterone
;
Glycogen Synthase Kinase 3 beta/pharmacology*
;
Rats, Sprague-Dawley
;
Sexual Maturation
;
Testis
;
Oxidative Stress
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
2.Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats.
Lilan LIU ; Ruya DENG ; Wenjin ZHOU ; Min LIN ; Lingzi XIA ; Haitao GAO
Journal of Southern Medical University 2023;43(4):577-584
OBJECTIVE:
To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.
METHODS:
Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.
RESULTS:
Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).
CONCLUSION
Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.
Rats
;
Male
;
Animals
;
Testis
;
Quercetin/pharmacology*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Oxidative Stress
;
Testosterone/pharmacology*
;
Superoxide Dismutase/metabolism*
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
3.Guijiajiao (Colla Carapacis et Plastri, CCP) prevents male infertility via gut microbiota modulation.
Wen SHENG ; Wenjing XU ; Jin DING ; Baowei LU ; Lumei LIU ; Qinghu HE ; Qing ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):403-410
Male infertility is a significant cause of psychosocial and marital distress in approximately 50% of couples who are unable to conceive, with male factors being the underlying cause. Guijiajiao (Colla Carapacis et Plastri, CCP) is a Traditional Chinese Medicine commonly used to treat male infertility. The present study aimed to investigate the potential mechanisms underlying the preventive effects of CCP on male infertility. An infertile male rat model was established using cyclophosphamide (CTX), and CCP was administered for both treatment and prevention. Fecal microbiota transplantation (FMT) was also performed to explore the role of gut microbiota in the CCP-mediated prevention of male infertility in rats. Sperm motility and concentration were determined using a semi-automatic sperm classification analyzer. Subsequently, histopathological analysis using HE staining was performed to examine the changes in the small intestine and testis. Moreover, the serum levels of lipopolysaccharide (LPS) and testosterone were measured by ELISA. In addition, immunohistochemistry was conducted to detect CD3 expression in the small intestine, while RT-qPCR was employed to assess the expressions of interleukin-1 beta (IL-1β), cluster of differentiation 3 (CD3), Monocyte chemoattractant protein-1 (MCP-1), and C-X-C motif chemokine ligand 10 (CXCL-10) in the small intestine and epididymis. Finally, gut microbiota was analyzed by 16S rRNA sequencing. CCP improved sperm motility, number, and concentration in CTX-induced infertile male rats. CCP increased the serum testosterone level, inhibited the immune cell infiltration of the intestinal lamina propria, and promoted the aggregation of CD3+ T cells in CTX-induced male infertility rats. CCP also inhibited the expressions of MCP-1, CXCL-10, and IL-1β in the epididymis of male infertility rats. At the genus level, CTX led to a reduction in the abundance of Lactobacillus, Clostridia_UCG.014, and Romboutsia in the intestinal tract of rats. In contrast, CCP decreased the abundance of Ruminococcus and increased the abundance of Romboutsia in infertile male rats. Additionally, FMT experiments proved that the gut microbiota of CCP-treated rats facilitated testicular tissue recovery and spermatogenesis while also reducing the serum LPS level in infertile male rats. CCP improves the spermatogenic ability of infertile male rats by restoring gut microbiota diversity and inhibiting epididymal inflammation.
Humans
;
Rats
;
Male
;
Animals
;
Gastrointestinal Microbiome
;
Lipopolysaccharides/pharmacology*
;
RNA, Ribosomal, 16S
;
Semen
;
Sperm Motility
;
Infertility, Male/prevention & control*
;
Testosterone
4.Change in hair growth-related gene expression profile in human isolated hair follicles induced by 5-alpha reductase inhibitors - dutasteride and finasteride - in the presence of testosterone.
Toshiki HATANAKA ; Zrinka LULIC ; Tim MEFO ; Cath BOOTH ; Elliott HARRISON ; Gary ONG
Singapore medical journal 2022;63(9):552-558
5.Momordica charantia fruit extract with antioxidant capacity improves the expression of tyrosine-phosphorylated proteins in epididymal fluid of chronic stress rats.
Supatcharee ARUN ; Therachon KAMOLLERD ; Nareelak TANGSRISAKDA ; Sudtida BUNSUEB ; Arada CHAIYAMOON ; Alexander Tsang-Hsien WU ; Sitthichai IAMSAARD
Journal of Integrative Medicine 2022;20(6):534-542
OBJECTIVE:
Although the protective effects of Momordica charantia L. (MC) extract on chemical-induced testicular damage have been studied, the preventive effects of MC extract on functional proteins in the epididymis under chronic stress have never been reported. This study investigated the protective effects of MC fruit extract on protein secretion, especially tyrosine-phosphorylated proteins, in the epididymis of rats exposed to chronic unpredictable stress (CUS).
METHODS:
Total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacities of MC extract were measured. Adult male rats were divided into 4 groups: control group, CUS group, and 2 groups of CUS that received different doses of MC extract (40 or 80 mg/kg). In treated groups, rats were given MC daily, followed by induction of CUS (1 stressor was randomly applied from a battery of 9 potential stressors) for 60 consecutive days. Plasma corticosterone and testosterone levels were analyzed after the end of experiment. Expressions of heat-shock protein 70 (HSP-70) and tyrosine-phosphorylated proteins present in the fluid of the head and tail of the epididymis were quantified using Western blot.
RESULTS:
MC extract contained TPC of (19.005 ± 0.270) mg gallic acid equivalents and TFC of (0.306 ± 0.012) mg catechin equivalents per gram, and had 2,2-diphenyl-1-picrylhydrazyl antioxidant capacity of (4.985 ± 0.086) mg trolox equivalents per gram, radical 50% inhibitory concentration of (2.011 ± 0.008) mg/mL and ferric reducing antioxidant power of (23.697 ± 0.819) µmol Fe(II) per gram. Testosterone level in the epididymis was significantly increased, while the corticosterone level was significantly improved in groups treated with MC extract, compared to the CUS animals. Particularly, an 80 mg/kg dose of MC extract prevented the impairments of HSP-70 and tyrosine-phosphorylated protein expressions in the luminal fluid of the epididymis of CUS rats.
CONCLUSION
MC fruit extract had antioxidant activities and improved the functional proteins secreted from the head and tail of the epididymis. It is possible to develop the MC fruit extract as a male fertility supplement for enhancing functional sperm maturation in stressed men.
Male
;
Rats
;
Animals
;
Antioxidants/pharmacology*
;
Tyrosine/metabolism*
;
Plant Extracts/therapeutic use*
;
Corticosterone
;
Seeds
;
Testosterone
;
Fruit/metabolism*
6.Study on effect of extract from Tibetan medicine Urtica hyperborean on anti-prostatic hyperplasia.
Ri-Na SU ; Rong-Rui WEI ; Wei-Zao LUO ; Ji-Xiao ZHU ; Lu WANG ; Guo-Yue ZHONG
China Journal of Chinese Materia Medica 2019;44(9):1953-1959
In this study,mouse models of benign prostatic hyperplasia induced by subcutaneous injection of testosterone propionate was used to investigate the therapeutic effect and mechanism of Urtica hyperborean( UW) extracts on prostate hyperplasia in mice. The effects of UW extracts on prostate index,serum epidermal growth factor( EGF) and dihydrotestosterone( DHT) in model mice were observed,and the EGF and anti-apoptotic factor( Bcl-2) mRNA expression levels were detected as well as pathological changes in prostate tissue. The results showed that the ethyl acetate extraction and alcohol soluble fraction of the UW could significantly reduce the prostate index,reduce the serum DHT and EGF levels( P<0. 01),and significantly decrease the EGF and Bcl-2 mRNA expression( P<0. 01),significantly improved the morphological structure of prostate tissue. The above results confirmed that ethyl acetate extract and alcohol-soluble parts of UW have a good preventive effect on mice prostatic hyperplasia model,and its mechanism may be to reduce androgen levels by regulating polypeptide growth factors and/or inhibiting cell hyperproliferation and promoting apoptosis. This study laid the foundation for the further research on UW.
Animals
;
Dihydrotestosterone
;
blood
;
Epidermal Growth Factor
;
blood
;
Male
;
Medicine, Tibetan Traditional
;
Mice
;
Plant Extracts
;
pharmacology
;
Prostatic Hyperplasia
;
chemically induced
;
drug therapy
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Testosterone Propionate
;
Urticaceae
;
chemistry
7.Expressions of HSP110 family members in the testes and epididymis of mice at different stages of development and their regulation by hormones.
Chengting RONG ; Ziwei DU ; Juan LIU ; Xinan WU
Journal of Southern Medical University 2019;39(9):1083-1088
OBJECTIVE:
To study the expressions of the members of HSP110 family in the testis and epididymis of mice at different stages of development and whether they are regulated by hormones.
METHODS:
The testicular and epididymis tissues of mice at different ages (14, 21, 28, 35, 42, 49, 70, and 90 days after birth, 3 mice at each age) were collected for RT-PCR detection of the expression levels of HSP110 family members. Forty-eight mice were randomized into 3 groups for sham operation, castration, or castration with testosterone injections every other day (starting at 7 days after castration), and at 1, 3, 5, and 7 days after first testosterone injection, the expressions of HSP110 family in the epididymis were detected using RT-PCR.
RESULTS:
The mRNA expression levels of HSP110 family members underwent obvious variations with the development of the mice: , and expressions in the testicles of the mice first increased and then decreased, and gradually became stable; they also exhibited similar temporal patterns of changes in the epididymis. In the castrated mice, the mRNA expressions of and in the epididymis decreased significantly with the reduction of serum hormone levels ( < 0.05), and became normal after the supplementation of exogenous hormone.
CONCLUSIONS
The expression levels of HSP110 family are affected by developmental regulation, and the expressions of and are under the regulation by hormones.
Animals
;
Epididymis
;
growth & development
;
Gene Expression Regulation, Developmental
;
HSP110 Heat-Shock Proteins
;
genetics
;
metabolism
;
Male
;
Mice
;
Orchiectomy
;
Testis
;
growth & development
;
Testosterone
;
pharmacology
8.Antagonistic effect of vitamin E on di-2-ethylhexyl phthalate-induced reproductive toxicity in male rats.
Chao-Yun WANG ; Juan-Juan ZHANG ; Peng DUAN
National Journal of Andrology 2018;24(7):589-595
ObjectiveTo explore the antagonistic effect of vitamin E (VE) on male reproductive toxicity induced by di-2-ethylhexyl phthalate (DEHP) in pubertal SD rats and its underlying mechanisms.
METHODSThirty 5-week-old male SD rats were randomly divided into five groups of equal number, corn oil control, low-dose (10 mg/kg/d), medium-dose (100 mg/kg/d) and high-dose DEHP exposure (500 mg/kg/d), and VE intervention (high-dose DEHP + VE [100 mg/kg/d]), and treated respectively for 30 successive days. At 3 days after treatment, the testes of the animals were harvested for determination of the oxidative stress index, serum reproductive hormone levels, cauda epididymal sperm parameters, and expressions of cell apoptosis-related genes and proteins.
RESULTSCompared with the control group, the rats of the medium- and high-dose DEHP groups showed significant decreases in the levels of such serum reproductive hormones as follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T), sperm parameters as average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), straightness (STR), linearity (LIN) and wobble (WOB), and the activities of superoxide dismutase (SOD) and glutathione peroxide (GSH-Px), but significant increases were observed in the latter two groups in the content of malondialdehyde (MDA)([3.32±0.87] nmol/mg pro vs [2.13±0.49] nmol/ mg pro), mRNA expressions of Bad, Bax, Cytochrome C, Caspase-3 and the Bax/Bcl-2 ratio, and protein expressions of Cytochrome C and Caspase-3. In comparison with the high-dose DEHP group, the VE intervention group exhibited remarkably increased serum LH and T levels, sperm VAP, VSL, VCL, STR and WOB, and activities of SOD and GSH-Px, but markedly decreased mRNA expressions of Bad, Bax, Cytochrome C, Caspase-3 and the Bax/Bcl-2 ratio as well as the protein expressions of Cytochrome C and Caspase-3 in the testis tissue (P<0.05).
CONCLUSIONSExposure to DEHP induces androgen secretion disorders, causes oxidative damage to the testicular tissue, activates the mitochondrial apoptosis pathway in the testis, and ultimately reduces the quality of epididymal sperm, while VE can protect the rat testis from DEHP-induced reproductive toxicity.
Animals ; Antioxidants ; pharmacology ; Apoptosis ; genetics ; Autophagy-Related Protein 5 ; metabolism ; Caspase 3 ; metabolism ; Diethylhexyl Phthalate ; antagonists & inhibitors ; Epididymis ; Follicle Stimulating Hormone ; blood ; Luteinizing Hormone ; blood ; Male ; Malondialdehyde ; metabolism ; Mitochondria ; drug effects ; Oxidative Stress ; drug effects ; Oxidoreductases ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reproduction ; Spermatozoa ; drug effects ; physiology ; Superoxide Dismutase ; metabolism ; Testis ; drug effects ; Testosterone ; blood ; Vitamin E ; pharmacology
9.Sodium 4-phenylbutyrate Attenuates High-fat Diet-induced Impaired Spermatogenesis.
Er Hui WANG ; San Qiao YAO ; Ling TAO ; Jin Yan XI
Biomedical and Environmental Sciences 2018;31(12):876-882
OBJECTIVE:
To determine the mitigating effects of sodium 4-phenylbutyrate (4-PBA) on high-fat diet (HFD)-induced spermatogenesis dysfunction.
METHODS:
Male rats (n = 30) were randomly divided into three groups: control, HFD, and 4-PBA (HFD +4-PBA). After 13 weeks, rats were euthanized. Testes and epididymis were harvested for further analysis. Sex hormones were detected, and hematoxylin and eosin staining was performed to examine the histological changes in the testes. Semen samples were collected to evaluate sperm quality. Spermatogenic cell apoptosis was detected by TUNEL assay.
RESULTS:
Compared with the control group, the final body weight and body weight gain were significantly higher in HFD-fed rats, while the testicle/body weight ratios were lower (P < 0.05). In HFD-fed rats, obvious pathological changes in the testicular tissue were observed. Treatment with 4-PBA attenuated HFD-induced histological damage, ameliorated the HFD-induced decrease in serum testosterone (T), and reduced the rate of testicular cell apoptosis (P < 0.05) in obese male rats. Finally, 4-PBA significantly improved semen parameters in HFD rats (P < 0.05).
CONCLUSION
HFD exposure induced detrimental effects on spermatogenesis, semen quality, serum T level, and testicular cell apoptosis in rats. Treatment with 4-PBA ameliorated HFD?induced impaired spermatogenesis via inhibition of apop-tosis in rats. 4-PBA may have therapeutic value in the treatment of obesity?related impairment of spermatogenesis.
Animals
;
Diet, High-Fat
;
adverse effects
;
Male
;
Phenylbutyrates
;
pharmacology
;
Rats, Sprague-Dawley
;
Semen Analysis
;
Spermatogenesis
;
drug effects
;
Testis
;
drug effects
;
pathology
;
Testosterone
;
blood
10.Phyllanthus emblica leaf extract ameliorates testicular damage in rats with chronic stress.
Supatcharee ARUN ; Jaturon BURAWAT ; Supataechasit YANNASITHINON ; Wannisa SUKHORUM ; Akgpol LIMPONGSA ; Sitthichai IAMSAARD
Journal of Zhejiang University. Science. B 2018;19(12):948-959
Stress affects the male reproductive system and can cause sub-fertility or infertility. Although Phyllanthus emblica L. (PE) extract has been shown to have high antioxidant capacity and protective properties in damaged tissue, the preventive effects of PE extract on testicular function from stress-related impairment have never been demonstrated. This study aimed to investigate the effects of PE aqueous leaf extract on testicular impairment and protein marker changes in rats suffering from chronic stress. Adult male rats were divided into four groups: a control group, a chronic stress (CS) group, and two groups with CS that received different doses of PE extract (50 or 100 mg/kg body weight (BW)). In the treatment groups, the animals were given PE extract daily before stress induction for 42 consecutive days. Stress was induced through immobilization (4 h/d) followed by forced cold swimming (15 min/d). Sperm quality and the histology of the testes and caudal epididymis were examined, as were levels of serum corticosterone, testosterone, and malondialdehyde (MDA). The expressions of testicular steroidogenic acute regulatory (StAR) and tyrosine-phosphorylated proteins were investigated using immuno-Western blot analysis, as these proteins are assumed to play important roles in spermatogenesis and androgen synthesis. The results showed that PE (50 mg/kg BW) significantly increased sperm concentration and testosterone levels, while decreasing corticosterone levels, MDA levels, sperm head abnormalities, and acrosome-reacted sperm in CS rats. In addition, PE at both doses was found to diminish testicular histopathology in the CS rats. We also found that 50 mg/kg BW of PE significantly improved StAR protein expression and altered the intensities of some tyrosine-phosphorylated proteins in testis. We conclude that PE leaf extract at 50 mg/kg BW can prevent testicular damage in rats with CS.
Acrosome Reaction
;
Animals
;
Antioxidants/pharmacology*
;
Corticosterone/blood*
;
Epididymis/metabolism*
;
Male
;
Malondialdehyde/blood*
;
Phosphoproteins/metabolism*
;
Phosphorylation
;
Phyllanthus emblica/chemistry*
;
Plant Extracts/pharmacology*
;
Plant Leaves/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Sperm Count
;
Spermatogenesis/drug effects*
;
Spermatozoa/drug effects*
;
Stress, Physiological
;
Testis/drug effects*
;
Testosterone/blood*
;
Tyrosine/chemistry*

Result Analysis
Print
Save
E-mail