1.Effect of a novel radio-frequency atmospheric-pressure glow discharge plasma jet treatment on crosslinking of dentin collagen.
Xin Rong MA ; Xiao Ming ZHU ; Jing LI ; De Li LI ; He Ping LI ; Jian Guo TAN
Journal of Peking University(Health Sciences) 2022;54(1):83-88
OBJECTIVE:
To investigate the effect of a noval radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet on crosslinking of dentin collagen.
METHODS:
(1) Twenty intact third molars were collected. The middle dentin discs were prepared for each tooth by low-speed water-cooled Isomet saw, and then immersed in 10% (mass fraction) H3PO4 solution for 16 h to obtain fully demine-ralized dentin collagen. The twenty dentin discs were then randomly divided into five groups. The control group was untreated while the four experimental groups were treated by plasma jet with gas temperature of 4 ℃ for different times (20 s, 30 s, 40 s, and 50 s). The structure and crosslinking degree of dentin collagen were characterized by attenuated total reflection-Fourier transform infrared spectroscopy. The surface morphology of demineralized dentin was observed by scanning electron microscope, and the microstructure was observed by transmission electron microscope. (2) Fourty non-caries third molars were collected to prepare 5 g fine dentin powder, then completely demineralized with 10% H3PO4 solution. The control group was untreated, while the four experimental groups were treated by plasma jet for 20 s, 30 s, 40 s and 50 s. The crosslinking degree of each group was determined by ninhydrin colorimetric method. (3) Forty intact third molars were collected to obtain dentin strips. Only two central symmetrical dentin strips (nasty 80) were taken from each tooth and immersed in 10% H3PO4 solution for 16 h to obtain fully demineralized dentin collagen. Eighty dentine collagen fiber strips were randomly divided into five groups. The control group was untreated and the axial surfaces of dentin collagen fiber strips in the expe-rimental groups were treated with the plasma jet for 20 s, 30 s, 40 s and 50 s. The ultimate tensile strength of dentin was measured by universal mechanical machine.
RESULTS:
(1) The surface morphology of demineralized dentin observed by scanning electron microscope showed that the network structure of collagen fibers on the surface of demineralized dentin treated with the plasma jet for 20 s, 30 s and 40 s could maintain the uncollapsed three-dimensional structure, and part of the microstructure was destroyed after plasma jet treated for 50 s. After being treated by plasma jet for 20 s, 30 s and 40 s, the three-dimensional structure was uncollapsed, and the typical periodic transverse pattern of natural type Ⅰ collagen fiber could be seen. The results of infrared spectra showed that the secondary conformation of dentin collagen fibers was the same as that of the control group after being treated with the plasma jet, and the intensity of amide band was significantly increased after being treated for 30 s and 40 s. (2) The results of ninhydrin crosslinking test showed that the crosslinking ratio of dentin collagen treated by plasma jet for 30 s and 40 s was the highest, and the difference was statistically significant (P < 0.05). (3) The results of dentin ultimate tensile strength showed that the control group was (1.67±0.24) MPa, and the plasma jet treated 20 s, 30 s, 40 s and 50 s groups were (4.21±0.15) MPa, (7.06±0.30) MPa, (7.32±0.27) MPa, and (6.87±0.17) MPa, which were significantly different from that of the control group (P < 0.05).
CONCLUSION
The novel RF-APGD plasma jet treatment can promote the crosslinking degree of demineralized dentin collagen and improve their ultimate tensile strength.
Collagen
;
Dental Bonding
;
Dentin
;
Dentin-Bonding Agents
;
Microscopy, Electron, Scanning
;
Tensile Strength
2.Effects of different concentrations of sodium hypochlorite on dentine adhesion and the recovery application of sodium erythorbate.
Bihan ZHANG ; Donghui YANG ; Xilei ZHU ; Yaqin ZHOU ; Qinyi ZHU ; Changyun FANG
Journal of Central South University(Medical Sciences) 2022;47(2):226-237
OBJECTIVES:
Root canal therapy is the most effective and common method for pulpitis and periapical periodontitis. During the root canal preparation, chemical irrigation plays a key role. However, sodium hypochlorite (NaOCl), the widely used irrigation fluid, may impact the bonding strength between dentin and restorative material meanwhile sterilization and dissolving. Therefore, it's important to explore the influence of NaOCl on the adhesion between dentin and restoration materials to ensure clinical efficacy. This study aims to explore the effect of NaOCl on dentine adhesion and evaluate the effect of dentine adhesion induced by sodium erythorbate (ERY), and to provide clinical guidance on dentin bonding after root canal therapy.
METHODS:
Seventy freshly complete extracted human third molars aged 18-33 years old, without caries and restorations were selected. A diamond saw was used under running water to achieve dentine fragments which were divided into 10 groups with 14 fragments in each group: 2 control [deionized water (DW)±10% ERY] and 8 experimental groups (0.5%, 1%, 2.5%, and 5.25% NaOCl±10% ERY). The dentine specimens in the control group (treated with DW) and the experimental groups (treated with 0.5% NaOCl, 1% NaOCl, 2.5% NaOCl, and 5.25% NaOCl) were immersed for 20 min using corresponding solutions which were renewed every 5 min. The other 5 groups were immersed in 10% ERY for 5 min after an initial washing with DW for 1 min. Then, we selected 4 dentine fragments from all 14 fragments in each group and the numbers and diameters of opening dentinal tubules were observed under scanning electron microscope (SEM). The other 10 dentine fragments from each group were used to make adhesive samples by using self-etch adhesive wand composite resin. All the above adhesive samples were sectioned perpendicular to the bonded interface into 20 slabs with a cross-sectional area of 1 mm×1 mm using a diamond saw under the cooling water, and then the morphology of 10 slabs in each group's bonding interface was observed from aspects of formation of resin tags, depth of tags in dentin, and formation of hybrid layer under SEM. The other 10 slabs of each group's microtensile bond strength and failure modes were also analyzed.
RESULTS:
Among the 0.5% NaOCl, 1% NaOCl, 2.5% NaOCl, and 5.25% NaOCl groups, the number and diameter of patent dentinal tubules gradually increased with the rise of concentration of NaOCl solution (all P<0.05). Among the DW, 0.5% NaOCl, 1% NaOCl, 2.5% NaOCl, and 5.25% NaOCl groups, the number and diameter of patent dentinal tubules increased after using ERY, but without significant difference (all P>0.05). Among the DW, 0.5% NaOCl, 1% NaOCl, and 2.5% NaOCl groups, the scores of formation of resin tags under SEM gradually increased with the increase of concentration of NaOCl solution, while the score in the 5.25% NaOCl group decreased significantly compared with the score of the 2.5% NaOCl group (P<0.05). There was no significant difference between using 10% ERY groups and without using 10% ERY groups (all P>0.05). The scores of length of the tags under SEM in the 5.25% NaOCl group was significantly higher than the scores of DW, 0.5% NaOCl, and 1% NaOCl groups (all P<0.05), and it was also higher than the score of the 2.5% NaOCl group, but without significant difference (P>0.05). There was no significant difference between using 10% ERY groups and without using 10% ERY groups (P>0.05). The scores of formation of hybrid layer under SEM in the 2.5% NaOCl and 5.25% NaOCl groups significantly decreased compared with the score of the DW group (all P<0.05). There were significant differences between the 2.5% NaOCl±10% ERY groups and between the 5.25% NaOCl±10% ERY groups (all P<0.05). Microtensile bond strength was greater in the 0.5% NaOCl, 1% NaOCl, and 2.5% NaOCl groups, but lower in the 5.25% NaOCl group than that in the DW group (all P<0.05). There were significant differences between the 2.5% NaOCl±10% ERY groups and between the 5.25% NaOCl±10% ERY groups (all P<0.05). The incidence of type "Adhesive" of failure modes in the 5.25% NaOCl group was significantly higher than that in other groups (all P<0.05), while the incidence of type "Adhesive" in the 5.25% NaOCl+10% ERY group was lower than that in the 5.25% NaOCl group (P<0.05).
CONCLUSIONS
The bonding strength to dentine increases with the increase of NaOCl concentration when the concentration lower than 2.5%; whereas it is decreased at a higher concentration (such as 5.25%). 10% ERY has a definite recovery effect on attenuated bonding strength to 5.25% NaOCl-treated dentine.
Adolescent
;
Adult
;
Ascorbic Acid
;
Dental Bonding
;
Dentin
;
Dentin-Bonding Agents/pharmacology*
;
Diamond/pharmacology*
;
Humans
;
Materials Testing
;
Microscopy, Electron, Scanning
;
Resin Cements/pharmacology*
;
Sodium Hypochlorite/pharmacology*
;
Tensile Strength
;
Water/pharmacology*
;
Young Adult
3.Effect of hydroxyapatite based agents on the bonding properties of universal adhesives.
Yu Chen MENG ; Fan HUANG ; Si Lin WANG ; Mei Wen LI ; Yi LU ; Dan Dan PEI
Chinese Journal of Stomatology 2022;57(2):173-181
Objective: To study the effect of hydroxyapatite (HA) based agents on the bonding properties of universal adhesive with different application modes, and to provide evidence for the use of adhesives after desensitization treatment. Methods: Sixty impacted third molars were extracted and selected (acquired from Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University). Four third molars were used to prepare 1 mm thick dentin disks and treated with 1% citric acid to simulate sensitive tooth models. The dentin surfaces were observed by scanning electron microscope (SEM) after treating with no desensitization (control group), desensitized by HA based toothpaste Biorepair and Dontodent Sensitive respectively (desensitizing toothpaste A group and B group), or HA paste treatment (desensitizing paste group ) (n=2 per group). The remaining teeth were selected to expose the mid-coronal dentin and establish dentin sensitivity models. Then, the specimens were divided into 4 former groups and received corresponding treatment. Each group was randomly divided into 2 subgroups, and intermediately strong universal adhesive (G-Premio Bond) was applied on the desensitized dentin by either etch-and-rinse mode or self-etch mode. Resin-dentin slice specimens (n=4 per subgroup), microtensile specimens (n=20 per subgroup) and slice specimens (n=6 per subgroup) were prepared. The microstructure and nanoleakage of the adhesive interfaces were observed by scanning electron microscopy (SEM). The microtensile strength (bond strength) and fracture mode were tested and recorded. The water permeability of the adhesive interface was observed by laser scanning confocal microscopy (LSCM). Results: SEM showed that desensitizing toothpaste and desensitizing paste could partially or entirely occlude most of the dentin tubules. For the etch-and-rinse mode, the bond strength of specimens treated with toothpaste A [(40.98±4.60) MPa], toothpaste B [(40.89±4.64) MPa] and HA paste [(41.48±3.65) MPa] was significantly higher than that of the control group [(38.58±4.28) MPa] (F=3.89,P<0.05). There was no statistically significant difference in bond strength among the 4 subgroups for self-etch modes (F=0.48,P>0.05). After desensitization, the bond strength of the control group and desensitizing groups in the self-etch mode was significantly higher than that in the etch-and-rinse mode (P<0.05). The overall fracture modes were mixed failure and interfacial failure in the control group and desensitizing groups. SEM showed speckled silver-stained particles deposited along the bottom of the hybrid layer on the bond interface of etch-and-rinse mode, and there were few silver-stained particles deposited on the bond interface of self-etch mode. LSCM showed continuous linear penetration in the hybrid layer of etch-and-rinse mode subgroups and discontinuous linear penetration in the hybrid layer of self-etch mode subgroups. Conclusions: HA based desensitizers have no adverse effect on the bond strength of intermediately strong universal adhesive and show good bonding performance accompanied with the self-etch mode.
Adhesives
;
Dental Bonding
;
Dental Cements
;
Dentin
;
Dentin-Bonding Agents
;
Durapatite
;
Humans
;
Materials Testing
;
Microscopy, Electron, Scanning
;
Resin Cements
;
Tensile Strength
4.Bonding properties of mild universal adhesives to dentin pretreated with hydroxyapatite-based desensitizing agents.
Yuchen MENG ; Fan HUANG ; Silin WANG ; Xin HUANG ; Yi LU ; Dandan PEI
West China Journal of Stomatology 2022;40(6):668-675
OBJECTIVES:
The purpose of the study was to evaluate the effect of hydroxyapatite (HA)-based desensiti-zing agents and determine their influence on the bonding performance of mild universal adhesives.
METHODS:
Mid-coronal dentin samples were sectioned from human third molars and prepared for a dentin-sensitive model. According to desensitizing applications, they were randomly divided into four groups for the following treatments: no desensitizing treatment (control), Biorepair toothpaste (HA-based desensitizing toothpaste) treatment, Dontodent toothpaste (HA-based desensitizing toothpaste) treatment, and HA paste treatment. Dentin tubular occlusion and occluded area ratios were evaluated by scanning electron microscopy (SEM). Furthermore, All-Bond Universal, Single Bond Universal, and Clearfil Universal Bond were applied to the desensitized dentin in self-etch mode. The wettability and surface free energy (SFE) of desensitized dentin were evaluated by contact angle measurements. Bonded specimens were sectioned into beams and tested for micro-tensile bond strength to analyze the effect of desensitizing treatment on the bond strength to dentin of universal adhesives.
RESULTS:
SEM revealed that the dentin tubule was occluded by HA-based desensitizing agents, and the area ratios for the occluded dentin tubules were in the following order: HA group>Biorepair group>Dontodent group (P<0.05). Contact angle analysis demonstrated that HA-based desensitizing agents had no statistically significant influence on the wettability of the universal adhesives (P>0.05). The SFE of dentin significantly increased after treatment by HA-based desensitizing agents (P<0.05). The micro-tensile bond strength test showed that HA-based desensitizing toothpastes always decreased the μTBS values (P<0.05), whereas the HA paste group presented similar bond strength to the control group (P>0.05), irrespective of universal adhesive types.
CONCLUSIONS
HA-based desensitizing agents can occlude the exposed dentinal tubules on sensitive dentin. When mild and ultra-mild universal adhesives were used for subsequent resin restoration, the bond strength was reduced by HA-based desensitizing toothpastes, whereas the pure HA paste had no adverse effect on bond strength.
Humans
;
Dental Cements/analysis*
;
Dentin/chemistry*
;
Durapatite/pharmacology*
;
Tensile Strength
;
Toothpastes
5.Optimization Design of Emergency Quick Fixation Device Based on ANSYS Workbench.
Yufei JING ; Hong CHEN ; Xiaoqiang ZHANG ; Zhan ZHAO ; Xudong YU ; Wei WANG
Chinese Journal of Medical Instrumentation 2021;45(5):512-516
OBJECTIVE:
A rapid fixation device is developed to solve the problems of emergency fixation and transportation of patients with spinal injury.
METHODS:
Through the analysis of the function,3D modeling design, finite element analysis and optimization design based on ANSYS Workbench, tensile strength verification experiment, we produced the prototype, and tested it, conducted a simulated rescue experiment.
RESULTS:
The fixation device designed can meet the demand of spinal injury patients for safe rescue after accidents, and the quality of the rapid fixation device was lighten by about 30% without reducing the intensity.
CONCLUSIONS
The method based on optimal design can obviously improve the structure design, and has reference significance for other related rescue equipment design.
Equipment Design
;
Finite Element Analysis
;
Humans
;
Tensile Strength
6.Anatomical and tensile mechanical analysis of hip joint capsule repair in total hip replacement.
Han-Sheng HU ; Jing-Cheng WANG ; Zhi-Hua LU ; Wei-Min FAN
China Journal of Orthopaedics and Traumatology 2020;33(8):761-765
OBJECTIVE:
To explore the tensile mechanics and anatomical characteristics of the posterior hip capsule, and provide biomechanical and anatomical evidence for capsule repair in total hip replacement.
METHODS:
Six bone-capsule-bone specimens were obtained from posterior hip joint of fresh frozen cadavers. The maximum strain, load, elastic modulus and load strain curves of the capsule ligament complex specimens were recorded by Instron Universal Material Testing Machine. Twelve cadaveric hip specimens were dissected to the capsule. The tensile strain of normal capsule and conventionally reconstructed capsule at 90 degrees of hip flexion were documented. The suture area of the posterior capsule was divided into nine sections, and the thicknessof different sections was measured and compared. Posterior capsule of the cadavers was repaired in conventionally way and anatomical way separately and simulated rehabilitation was conducted. The effect of rehabilitation on the repaired capsule was observed.
RESULTS:
The load-strain curve of capsule ligament complex conforms to rheological and viscoelastic characteristics. The maximum tensile strain of the complex was (39.21±5.23)%, the maximum load was (142.06± 34.15) N, the tensile strength was (1.65±0.38) MPa, and the elastic modulus is (14.23±5.62) MPa. At 90 ° hip flexion, the tensile strain of repaired capsule was higher than that of normal capsule, and the difference was statistically significant (< 0.05). Tensile strain of conventionally reconstructed capsule is:upper part (37.0±4.9)%, middle part ( 53.3±1.1)%, lower part (68.3±6.2)%, tensile strain of normal capsule is:upper part (17.0±2.6)%, middle part (24.1±1.4)%, lower part (26.0± 4.3)% . The thickness of the posterior joint capsulein different sections is statistically significant (<0.05), and capsule at 0.5cm proximal to the femoral insertion is suitable for suture. There the average thickness of capsule is:upper part (3.48 ± 0.11) mm, middle part (2.36 ± 0.09) mm, lower part (1. 59±0.24) mm. The posterior inferior joint capsule is thinnest at (1.42± 0.02) cm proximal to the femoral insertion, and sutures should be avoided here. After simulating rehabilitation, avulsion occurred in the lower part of the posterior capsule repaired conventionally (10/12), and the anatomically repaired capsule remained intact.
CONCLUSION
The lower part of conventionally repaired capsule is overstretched and tends to fail. Anatomically repaired capsule conforms to tensile mechanics and is helpful to reduce the failure rate of repair.
Arthroplasty, Replacement, Hip
;
Biomechanical Phenomena
;
Femur
;
Hip Joint
;
surgery
;
Humans
;
Joint Capsule
;
surgery
;
Tensile Strength
7.Evaluation of microtensile bond strength between resin composite and glass ceramic.
Ren Tao TANG ; Xin Hai LI ; Jiang Li YU ; Lin FENG ; Xue Jun GAO
Journal of Peking University(Health Sciences) 2020;52(4):755-761
OBJECTIVE:
To evaluate the microtensile bond strength of resin composite to glass ceramic, and the effect of surface treatment of resin composite and thermal cycling aging on the microtensile bond strength.
METHODS:
Rectangular blocks were made with dentin of extracted molars, resin composite or feldspathic glass ceramic respectively. The bonding surfaces of these rectangular blocks were sanded by 600-grit silicon carbide paper before luting. A self-etching resin cement was used as luting agent. The specimens were divided into groups according to the types of substrates of adhesion (dentin/glass ceramic or resin composite/glass ceramic), the way of surface treatments and whether thermal cycling aging ocurred. The dentin blocks were adhered to ceramic blocks as controls (group A1 and A2). The resin composite blocks were adhered to the ceramic blocks as experiment groups. The resin composite surfaces were treated by different ways before luting: no extra surface treatment (group B1 and B2), treated by ethyl methacrylate solution (group C1 and C2) or silane coupling agent (group D1 and D2), coarsened by 360-grit silicon carbide paper (group E1 and E2) or polished by 1 200-grit silicon carbide paper (group F1 and F2). After luting, the microtensile bond strength of the specimens were tested before (group A1-F1) or after (group A2-F2) thermal cycling aging. After microtensile bond strength test, the fracture bonding surfaces of the specimens were observed by a scanning electron microscopy to determine the type of bonding failure. The data were statistically analyzed using one-way analysis of variance.
RESULTS:
The microtensile bond strength of resin composite to glass ceramic with no extra treatment achieved high bond values before and after thermal cycling [B1 (30.02±3.85) MPa, B2 (26.83±3.14) MPa], which were statistically different from those of the control groups [A1 (20.55±4.51) MPa, A2 (12.94±0.69) MPa, P < 0.05]. The microtensile bond strength between the glass ceramic and resin composite did not increase after different surface treatments of resin composite.
CONCLUSIONS
The microtensile bond strength between resin composite and glass ceramic achieved as similar bond strength as that between dentin and glass ceramic and even better. Surface treatment of resin composite via methyl methacrylate solution, silane coupling agent, coarsening, or polishing did not increase the microtensile bond strength effectually.
Acid Etching, Dental
;
Ceramics
;
Composite Resins
;
Dental Bonding
;
Materials Testing
;
Resin Cements
;
Silanes
;
Surface Properties
;
Tensile Strength
8.Effect of bioactive glass pretreatment on the durability of dentin bonding interface.
Qiu Ju LI ; Wei Yu GONG ; Yan Mei DONG
Journal of Peking University(Health Sciences) 2020;52(5):931-937
OBJECTIVE:
To study the effect of bioactive glass (BG) on the dentin bond strength and the microleakage of hybrid layer.
METHODS:
In the study, 30 dentin planes were prepared from the third molars with no caries and equally assigned to the control group, BG group, and sodium trimetaphosphate (STMP)-polyacrylic acid (PAA)-BG group (S-P-BG group), randomly. After etched with 35% phosphoric acid, the dentin planes of BG group were pretreated with 0.5 g/L BG, and the dentin planes of S-P-BG group were pretreated with 5% STMP, 5% PAA and 0.5 g/L BG. No additional pretreatment was done to the dentin planes of control group. Then the dentin planes were bonded using 3M Single Bond 2 adhesive to 3M Z350XT composite resin, and cut into 0.9 mm×0.9 mm column samples, which were stored at 37 ℃ artificial saliva (AS). After 24 hours, 1 month, and 3 months, the microtensile bond strength test was performed. The data were analyzed using one-way ANOVA and LSD method. The morphology of the bond fracture interface was observed with scanning electron microscope. Other 27 teeth were collected and the enamel layer and roots cut off, with the pulp chamber exposed. 0.1% rhodamine B was added to the 3M Single Bond 2 adhesive, and then the adhesive was applied to complete the bonding procedures as above. The teeth were stored in 37 ℃ AS for 24 hours, 1 month, 3 months, and then 0.1% sodium fluorescein solution was placed in the chambers and stained for 1 hour. Confocal laser scanning microscopy was used to observe the interface morphology and microleakage of the hybrid layer.
RESULTS:
At the end of 24 hours and 1 month, there was no significant difference in the microtensile bond strength among the three groups (P>0.05). After 3 months of soaking, the S-P-BG group [(36.91±7.07) MPa] had significantly higher microtensile bond strength than the control group [(32.73±8.06) MPa] (P=0.026); For the control group and the BG group, the microtensile bond strength significantly decreased at the end of 3 months compared with 24 hours (control group: P=0.017, BG group: P=0.01); The microtensile bond strength of S-P-BG group af the end of 3 months had no significant difference in compared with 24 hours [(37.99±7.98) MPa] (P>0.05). Observation of the fracture surface at the 24 hours showed no obvious mineralization in all the three groups. After 1 and 3 months, mineral formation was observed in BG group and S-P-BG group, and no obvious collagen exposure was observed in S-P-BG group. Confocal laser scanning microscopy revealed no obvious differences in the morphology and quantity of the resin tag in the control group, BG group and S-P-BG group. At the end of 24 hours, leakage was found in all the three groups. The microleakage of the control group increased at the end of 3 months, while the microleakage of the BG and S-P-BG groups decreased.
CONCLUSION
BG pretreatment of dentin bonding interface can induce mineralization at the bonding interface and reduce the microleakage of the hybrid layer; pretreating the dentin bonding interface with STMP, PAA and BG may enhance the maintaining of the dentin bonding durability.
Dentin
;
Dentin-Bonding Agents
;
Glass
;
Resin Cements
;
Tensile Strength
9.A Comparative Study of Tensile Strength of Three Operative Fixation Techniques for Metacarpal Shaft Fractures in Adults: A Cadaver Study
Jin Rok OH ; Doo Sup KIM ; Jun Seop YEOM ; Sang Kyu KANG ; Yun Tae KIM
Clinics in Orthopedic Surgery 2019;11(1):120-125
BACKGROUND: We sought to estimate the ultimate tensile strength after metacarpal shaft fracture repair in adults using three operative fixation methods: plate fixation, Kirschner wire (K-wire) fixation, and intramedullary headless compression screw fixation. We also compared the advantages and disadvantages of each operative technique. METHODS: We acquired 30 metacarpal bones from four Korean adult cadavers without trauma, operative history, or deformities. The 30 metacarpal bones were divided into ten groups consisting of three metacarpal bones each with matching sizes and lengths. They were fractured, reduced, and fixed with plate and screws, K-wires, or headless compression screws. We performed force testing, collected ultimate tensile strength data, and created a stress-strain graph. RESULTS: The ultimate tensile strength of ten groups according to the fixation method was as follows: late and screw fixation, 246.1 N (range, 175.3 to 452.4 N); K-wire fixation, 134.6 N (62.7 to 175.0 N); and intramedullary headless compression screw fixation, 181.2 N (119.2 to 211.7 N). The median tensile strength of each fixation method was significantly different. In addition, the post-hoc test showed significant difference between the plate and screw fixation and K-wire fixation, between the headless compression screw fixation and K-wire fixation, and between the headless compression screw fixation and plate and screw fixation. CONCLUSIONS: The tensile strength median values decreased in the following order showing significant differences among the fixation methods: plate and screw fixation, headless compression screw fixation, K-wire fixation. Significant differences were also observed between the plate and screw fixation and K-wire fixation, between the headless compression screw fixation and K-wire fixation, and between the headless compression screw fixation and plate and screw fixation.
Adult
;
Cadaver
;
Congenital Abnormalities
;
Humans
;
Metacarpal Bones
;
Methods
;
Tensile Strength
10.Experimental Investigation on the Tissue Response Induced by Face-Lifting Mesh Suspension Thread in Rats
Jung Eun KIM ; Yo Han KIM ; A Young PARK ; Ho Jung LEE ; Jong Hun LEE
Annals of Dermatology 2019;31(6):645-653
BACKGROUND: Face-lifting procedures are often performed to hide the effects of aging. Thread-lifting, a minimally invasive technique for the correction of facial aging, has become increasingly popular, and various materials for the procedure have been developed. OBJECTIVE: This study compared tissue responses to two types of threading sutures placed under rat skin: polypropylene (PP) monofilament mesh suspension thread (a novel face-lifting material) and polydioxanone (PDO) barbed thread. METHODS: Eight rats each were assigned to the PP monofilament mesh suspension, PDO barbed thread, and control groups. Tissue reactions were evaluated 28 days after subcutaneous loading of the materials. RESULTS: Significant increases in tensile strength and the mean area occupied by collagen fibers were evident in skin loaded with PDO barbed thread and PP monofilament mesh suspension thread compared to control skin (p<0.05). Compared to sites loaded with PDO barbed thread, those loaded with PP monofilament mesh suspension thread showed a significant increase in the number of collagen fibers and a lower grade of inflammation (p<0.05). CONCLUSION: PP monofilament mesh suspension thread has skin-rejuvenating effects comparable to those of PDO barbed thread, but induces a less severe inflammatory response. This indicates that it is a safe and effective material for use in thread-lifting procedures on aging skin.
Aging
;
Animals
;
Collagen
;
Inflammation
;
Polydioxanone
;
Polypropylenes
;
Rats
;
Skin
;
Sutures
;
Tensile Strength

Result Analysis
Print
Save
E-mail