1.Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1683-1702
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Mice
;
Animals
;
Epilepsy, Temporal Lobe/pathology*
;
Parvalbumins/metabolism*
;
Parkinson Disease/pathology*
;
Neurons/metabolism*
;
Interneurons/physiology*
;
Disease Models, Animal
;
Brain/pathology*
2.Clinicopathological and molecular features of multinodular and vacuolating neuronal tumors of the cerebrum.
Wei WANG ; Wen Li ZHAO ; Xue Fei WEN ; Wen Zhi CUI ; Dan Li YE ; Guang Ning YAN ; Geng CHEN
Chinese Journal of Pathology 2022;51(11):1129-1134
Objective: To investigate clinicopathological features of multinodular and vacuolar neurodegenerative tumor (MVNT) of the cerebrum, and to investigate its immunophenotype, molecular characteristics and prognosis. Methods: Four cases were collected at the General Hospital of Southern Theater Command, Guangzhou, China and one case was collected at the First People's Hospital of Huizhou, China from 2013 to 2021. Clinical, histological, immunohistochemical and molecular characteristics of these five cases were analyzed. Follow-up was carried out to evaluate their prognoses. Results: There were four females and one male, with an average age of 42 years (range, 17 to 51 years). Four patients presented with seizures, while one presented with discomfort on the head. Pre-operative imaging demonstrated non-enhancing, T2-hyperintense multinodular lesions in the deep cortex and superficial white matter of the frontal (n=1) or temporal lobes (n=4). Microscopically, the tumor cells were mostly arranged in discrete and coalescent nodules primarily within the deep cortical ribbon and superficial subcortical white matter. The tumors were composed of large cells with ganglionic morphology, vesicular nuclei, prominent nucleoli and amphophilic or lightly basophilic cytoplasm. They exhibited varying degrees of matrix vacuolization. Vacuolated tumor cells did not show overt cellular atypia or any mitotic activities. Immunohistochemically, tumor cells exhibited widespread nuclear staining for the HuC/HuD neuronal antigens, SOX10 and Olig2. Expression of other neuronal markers, including synaptophysin, neurofilament and MAP2, was patchy to absent. The tumor cells were negative for NeuN, GFAP, p53, H3K27M, IDH1 R132H, ATRX, BRG1, INI1 and BRAF V600E. No aberrant molecular changes were identified in case 3 and case 5 using next-generation sequencing (including 131 genes related to diagnosis and prognosis of central nervous system tumors). All patients underwent complete or substantial tumor excision without adjuvant chemoradiotherapy. Post-operative follow-up information over intervals of 6 months to 8 years was available for five patients. All patients were free of recurrence. Conclusions: MVNT is an indolent tumor, mostly affecting adults, which supports classifying MVNT as WHO grade 1. There is no tumor recurrence even in the patients treated with subtotal surgical excision. MVNTs may be considered for observation or non-surgical treatments if they are asymptomatic.
Adult
;
Female
;
Humans
;
Male
;
Brain Neoplasms/pathology*
;
Cerebrum/pathology*
;
Neurons/metabolism*
;
Seizures
;
Temporal Lobe/pathology*
;
Biomarkers, Tumor/metabolism*
3.Evaluation of Tumor Blood Flow Using Alternate Ascending/Descending Directional Navigation in Primary Brain Tumors: A Comparison Study with Dynamic Susceptibility Contrast Magnetic Resonance Imaging
Hyeree PARK ; Joonhyuk LEE ; Sung Hong PARK ; Seung Hong CHOI
Korean Journal of Radiology 2019;20(2):275-282
OBJECTIVE: Alternate ascending/descending directional navigation (ALADDIN) is a novel arterial spin labeling technique that does not require a separate spin preparation pulse. We sought to compare the normalized cerebral blood flow (nCBF) values obtained by ALADDIN and dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) in patients with primary brain tumors. MATERIALS AND METHODS: Sixteen patients with primary brain tumors underwent MRI scans including contrast-enhanced T1-weighted imaging, DSC perfusion MRI, and ALADDIN. The nCBF values of normal gray matter (GM) and tumor areas were measured by both DSC perfusion MRI and ALADDIN, which were compared by the Wilcoxon signed rank test. Subgroup analyses according to pathology were performed with the Wilcoxon signed rank test. RESULTS: Higher mean nCBF values of GM regions in the bilateral frontal lobe, temporal lobe, and caudate were detected by ALADDIN than by DSC perfusion MRI (p <0.05). In terms of the mean or median nCBF values and the mean of the top 10% nCBF values from tumors, DSC perfusion MRI and ALADDIN did not statistically significantly differ either overall or in each tumor group. CONCLUSION: ALADDIN tended to detect higher nCBF values in normal GM, as well as higher perfusion portions of primary brain tumors, than did DSC perfusion MRI. We believe that the high perfusion signal on ALADDIN can be beneficial in lesion detection and characterization.
Brain Neoplasms
;
Cerebrovascular Circulation
;
Frontal Lobe
;
Glioma
;
Gray Matter
;
Humans
;
Magnetic Resonance Angiography
;
Magnetic Resonance Imaging
;
Pathology
;
Perfusion
;
Temporal Lobe
4.Volumetric Changes in Hippocampal Subregions and Memory Performance in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.
Caihong JI ; Lujia ZHU ; Cong CHEN ; Shuang WANG ; Leilei ZHENG ; Hong LI
Neuroscience Bulletin 2018;34(2):389-396
In the present study we explored the different patterns of volumetric atrophy in hippocampal subregions of patients with left and right mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Meanwhile, the memory impairment patterns in Chinese-speaking TLE-HS patients and potential influencing factors were also determined. TLE-HS patients (21 left and 17 right) and 21 healthy controls were recruited to complete T2-weighted imaging and verbal/nonverbal memory assessment. The results showed that both left and right TLE-HS patients had overall reduced hippocampal subregion volumes on the sclerotic side, and cornu ammonis sectors (CA1) exhibited maximum atrophy. The verbal memory of left TLE-HS patients was significantly impaired (P < 0.001) and was not associated with the volumes of the left hippocampal subregions. Verbal or nonverbal memory impairment was not found in the patients with right TLE-HS. These results suggested that the atrophy of hippocampal subregion volumes cannot account for the verbal memory impairment, which might be related to the functional network.
Adult
;
Asian Continental Ancestry Group
;
Atrophy
;
pathology
;
Epilepsy, Temporal Lobe
;
complications
;
pathology
;
Female
;
Functional Laterality
;
Hippocampus
;
pathology
;
Humans
;
Male
;
Memory Disorders
;
etiology
;
pathology
;
Sclerosis
;
pathology
;
Young Adult
5.Akt Inhibitor Perifosine Prevents Epileptogenesis in a Rat Model of Temporal Lobe Epilepsy.
Feng ZHU ; Jiejing KAI ; Linglin CHEN ; Meiling WU ; Jingyin DONG ; Qingmei WANG ; Ling-Hui ZENG
Neuroscience Bulletin 2018;34(2):283-290
Accumulating data have revealed that abnormal activity of the mTOR (mammalian target of rapamycin) pathway plays an important role in epileptogenesis triggered by various factors. We previously reported that pretreatment with perifosine, an inhibitor of Akt (also called protein kinase B), abolishes the rapamycin-induced paradoxical increase of S6 phosphorylation in a rat model induced by kainic acid (KA). Since Akt is an upstream target in the mTOR signaling pathway, we set out to determine whether perifosine has a preventive effect on epileptogenesis. Here, we explored the effect of perifosine on the model of temporal epilepsy induced by KA in rats and found that pretreatment with perifosine had no effect on the severity or duration of the KA-induced status epilepticus. However, perifosine almost completely inhibited the activation of p-Akt and p-S6 both acutely and chronically following the KA-induced status epilepticus. Perifosine pretreatment suppressed the KA-induced neuronal death and mossy fiber sprouting. The frequency of spontaneous seizures was markedly decreased in rats pretreated with perifosine. Accordingly, rats pretreated with perifosine showed mild impairment in cognitive functions. Collectively, this study provides novel evidence in a KA seizure model that perifosine may be a potential drug for use in anti-epileptogenic therapy.
Animals
;
Anticonvulsants
;
pharmacology
;
Brain
;
drug effects
;
pathology
;
Convulsants
;
toxicity
;
Disease Models, Animal
;
Epilepsy, Temporal Lobe
;
chemically induced
;
pathology
;
Kainic Acid
;
toxicity
;
Male
;
Neurons
;
drug effects
;
pathology
;
Phosphorylcholine
;
analogs & derivatives
;
pharmacology
;
Protein Kinase Inhibitors
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
antagonists & inhibitors
;
Rats
;
Rats, Sprague-Dawley
;
Status Epilepticus
;
chemically induced
;
pathology
6.An Autopsy Confirmed Case of Semantic Variant Primary Progressive Aphasia with Frontotemporal Lobar Degeneration-TDP type C
Na Yeon JUNG ; Myung Jun LEE ; Jae Hyeok LEE ; Jin Hong SHIN ; Young Min LEE ; Myung Jun SHIN ; Kyoungjune PAK ; Chungsu HWANG ; Jae Woo AHN ; Suk SUNG ; Kyung Un CHOI ; Gi Yeong HUH ; Eun Joo KIM
Journal of the Korean Neurological Association 2018;36(1):35-39
A 62-year-old man presented with a one-year history of word finding difficulty, impaired single word comprehension and personality changes including aggression, apathy and eating change. Brain MRIs showed severe atrophy in the left anterior temporal lobe. The clinical syndromic diagnosis was semantic variant primary progressive aphasia. He died at age 70 of pneumonia. At autopsy, transactive response DNA-binding protein (TDP) immunoreactive long dystrophic neurites were predominantly found in the cerebral cortices, which were compatible with frontotemporal lobar degeneration-TDP type C pathology.
Aggression
;
Apathy
;
Aphasia, Primary Progressive
;
Atrophy
;
Autopsy
;
Brain
;
Cerebral Cortex
;
Comprehension
;
Diagnosis
;
Eating
;
Frontotemporal Dementia
;
Frontotemporal Lobar Degeneration
;
Humans
;
Magnetic Resonance Imaging
;
Middle Aged
;
Neurites
;
Pathology
;
Pneumonia
;
Semantics
;
TDP-43 Proteinopathies
;
Temporal Lobe
7.Temporal lobe epilepsy and adult hippocampal neurogenesis.
Liying CHEN ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):22-29
Temporal lobe epilepsy (TLE) is a common and severe neurological disorder which is often intractable. It can not only damage the normal structure and function of hippocampus, but also affect the neurogenesis in dentate gyrus (DG). It is well documented from researches on the animal models of TLE that after a latent period of several days, prolonged seizure activity leads to a dramatic increase in mitotic activity in the hippocampal DG. However, cell proliferation returns to baseline levels within 3-4 weeks after status epilepticus (SE). Meanwhile, there are two major abnormalities of DG neurogenesis, including the formation of hilar basal dendrites and the ectopic migration of newborn granule cells into the polymorphic cell layer, which may affect epileptogenesis and seizure onset. However, the specific contribution of these abnormalities to seizures is still unknown. In other words, whether they are anti-epileptic or pro-epileptic is still under heated discussion. This article systematically reviews current knowledge on neurogenesis and epilepsy based on the results of studies in recent years and discusses the possible roles of neurogenesis in epileptogenesis and pathologic mechanisms, so as to provide information for the potential application of neurogenesis as a new clinical therapeutic target for temporal lobe epilepsy.
Animals
;
Brain
;
Cell Movement
;
physiology
;
Cell Proliferation
;
physiology
;
Dendrites
;
pathology
;
Dentate Gyrus
;
growth & development
;
pathology
;
Epilepsy, Temporal Lobe
;
etiology
;
pathology
;
physiopathology
;
Hippocampus
;
growth & development
;
pathology
;
Humans
;
Mitosis
;
physiology
;
Neurogenesis
;
physiology
;
Neurons
;
pathology
;
Seizures
;
etiology
;
physiopathology
;
Status Epilepticus
;
physiopathology
8.Brain gray matter abnormalities revealed by voxel-based morphometry in patients with chronic low back pain.
Cui-Ping MAO ; Quan-Xin YANG ; Jian TANG ; Hua-Juan YANG ; Zhi-Lan BAI ; Qiu-Juan ZHANG ; Nadeem ZAHID
Journal of Southern Medical University 2016;36(8):1041-1047
OBJECTIVETo explore the morphometric abnormalities of brain gray matter (GM) in patients with chronic low back pain (CLBP).
METHODSThirty patients with CLBP and 30 healthy individuals were enrolled and examined with a 3.0 T magnetic resonance (MR) scanner. High-resolution T1 structural MR data were acquired and data analysis was performed using voxel-based morphometry (VBM) in FMRIB Software Library. The morphological differences were compared between the two groups.
RESULTSs Compared with the healthy control subjects, patients with CLBP showed decreased GM volumes in several brain cortical areas including the bilateral superior frontal gyrus, right frontal pole, left insular cortex, left middle and left inferior temporal gyrus (P<0.05, after TFCE correction). Increased GM volumes were found in the patients in the subcortical structures including the left thalamus, bilateral putamen, bilateral nucleus accumben and right caudate nucleus (P<0.05, after TFCE correction).
CONCLUSIONPatients with CLBP have different patterns of GM abnormalities in different brain regions, characterized by reduced GM volume in cerebral cortical regions and increased GM volume in the subcortical nuclei. Such changes might be associated with the maladaptation of the brain in chronic pain state.
Cerebral Cortex ; Frontal Lobe ; Gray Matter ; diagnostic imaging ; pathology ; Humans ; Low Back Pain ; physiopathology ; Magnetic Resonance Imaging ; Temporal Lobe ; Thalamus
9.Preserved Hippocampal Glucose Metabolism on 18F-FDG PET after Transplantation of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells in Chronic Epileptic Rats.
Ga Young PARK ; Eun Mi LEE ; Min Soo SEO ; Yoo Jin SEO ; Jungsu S OH ; Woo Chan SON ; Ki Soo KIM ; Jae Seung KIM ; Joong Koo KANG ; Kyung Sun KANG
Journal of Korean Medical Science 2015;30(9):1232-1240
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may be a promising modality for treating medial temporal lobe epilepsy. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a noninvasive method for monitoring in vivo glucose metabolism. We evaluated the efficacy of hUCB-MSCs transplantation in chronic epileptic rats using FDG-PET. Rats with recurrent seizures were randomly assigned into three groups: the stem cell treatment (SCT) group received hUCB-MSCs transplantation into the right hippocampus, the sham control (ShC) group received same procedure with saline, and the positive control (PC) group consisted of treatment-negative epileptic rats. Normal rats received hUCB-MSCs transplantation acted as the negative control (NC). FDG-PET was performed at pre-treatment baseline and 1- and 8-week posttreatment. Hippocampal volume was evaluated and histological examination was done. In the SCT group, bilateral hippocampi at 8-week after transplantation showed significantly higher glucose metabolism (0.990 +/- 0.032) than the ShC (0.873 +/- 0.087; P < 0.001) and PC groups (0.858 +/- 0.093; P < 0.001). Histological examination resulted that the transplanted hUCB-MSCs survived in the ipsilateral hippocampus and migrated to the contralateral hippocampus but did not differentiate. In spite of successful engraftment, seizure frequency among the groups was not significantly different. Transplanted hUCB-MSCs can engraft and migrate, thereby partially restoring bilateral hippocampal glucose metabolism. The results suggest encouraging effect of hUCB-MSCs on restoring epileptic networks.
Animals
;
Chronic Disease
;
Cord Blood Stem Cell Transplantation/*methods
;
Epilepsy, Temporal Lobe/*metabolism/pathology/*therapy
;
Fluorodeoxyglucose F18/*pharmacokinetics
;
Hippocampus/*metabolism/*pathology/surgery
;
Male
;
Mesenchymal Stem Cell Transplantation/methods
;
Radiopharmaceuticals/pharmacokinetics
;
Rats
;
Rats, Sprague-Dawley
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Tissue Distribution
;
Treatment Outcome
10.Structural changes in the gray matter in patients with trigeminal neuralgia: a voxel-based morphometric study.
Jianhao YAN ; Meng LI ; Tianyue WANG ; Wenfeng ZHAN ; Guihua JIANG
Journal of Southern Medical University 2015;35(8):1180-1183
OBJECTIVETo investigate the changes in whole brain gray matter volume in patients with trigeminal neuralgia using voxel-based morphometry (VBM).
METHODSTwenty-eight patients with trigeminal neuralgia and 28 healthy controls underwent magnetic resonance imaging with a Philips 1.5T MRI scanner. VBM was used to compare the structural differences in the whole brain gray matter between the two groups based on the DARTEL after data preprocessing with SPM8 software package.
RESULTSCompared with the healthy controls, the patients with trigeminal neuralgia presented with decreased gray matter volume in several brain regions including the bilateral middle temporal gyrus, bilateral superior/middle frontal gyrus, left pre-/post-central gyrus, right fusiform and anterior cingulate gyrus.
CONCLUSIONSPatients with trigeminal neuralgia had abnormal gray matter volume in some brain regions associated with perception and processing of pain sensation. These changes may provide clues for further exploration of the neuropathogenic basis of trigeminal neuralgia.
Brain Mapping ; Case-Control Studies ; Frontal Lobe ; pathology ; Gray Matter ; pathology ; Humans ; Magnetic Resonance Imaging ; Temporal Lobe ; pathology ; Trigeminal Neuralgia ; pathology

Result Analysis
Print
Save
E-mail