1.Audit to assess the quality of 916 prosthetic prescriptions of removable partial dentures.
Na ZHANG ; Bochun MAO ; Yunhan DAI ; Shengkai CHEN ; Ziying YOU ; Junjing ZHANG ; Xin CHEN ; Haoyue DONG ; Li YUE ; Haiyang YU
West China Journal of Stomatology 2023;41(3):315-322
OBJECTIVES:
The objectives of this study were to assess the quality of prosthetic prescriptions of removable partial dentures (RPDs) and to analyze the current situation of the communication and information delivery between clinicians and technicians.
METHODS:
All RPD prosthetic prescriptions received by a major dental laboratory in 4 weeks were involved in a quality audit, and the prescriptions were divided into three groups in accordance with the grades of clients. The filling of prosthetic prescriptions was recorded. The items in the prescriptions for audit included the general information of the patient, the general information of the clinician, the design diagram information, other detailed information, and the return date. The prescriptions were categorized into four levels on the basis of their quality by two quality inspectors who have been working for more than 10 years.
RESULTS:
A total of 916 prescriptions were collected and assessed. The names in the general information of the patient and the clinician were filled out best, both at the rate of 97.6% (n=894). The return date was filled out worst, only at the rate of 6.4% (n=59). Of those prescriptions, 86.8% (n=795) exhibited inadequate design diagram information. The results of the quality assessment demonstrated that 74.2% of prescriptions were assessed as noncompliant ones and failed to meet the acceptable clinical quality standard.
CONCLUSIONS
At present, the overall quality of RPD prosthetic prescriptions is poor. The responsibilities of clinicians and technicians are unclear, and the communication between them is not ideal.
Humans
;
Denture Design
;
Denture, Partial, Removable
;
Prescriptions
2.Changing scanning angles on improving finish line trueness of the full crown preparation.
Nan JIANG ; Xu Dong BAO ; Lin YUE
Chinese Journal of Stomatology 2023;58(2):158-164
Objective: To explore the effect of scanning methods on finish line trueness of the full crown preparation. Methods: The standard full crown preparation model of the right maxillary first molars was prepared by using the maxillary standard resin dentition model. The standard preparation was scanned by imetric scanner and data were used as the true value. CEREC Omnicam and 3Shape TRIOS were used to scan the standard preparation. According to the scanning methods, they were divided into parallel scanning group, occlusal wave scanning group and buccolingual wave scanning group. Each group was scanned repeatedly 6 times. The data were imported into Geomagic Studio 2013 software, and the local finish line image data of the mesial, distal, buccal and lingual regions of the full crown preparation were extracted respectively. Three-dimensional deviation analysis was performed with the reference true value, and the root- mean-square error (RMSE) was the evaluation index of scanning trueness. The statistical method was one-way ANOVA. Results: Parallel scanning group: in general, the RMSE value of complete finish lines of scanner B [(35±6) μm] was significantly lower than that of scanner A [(44±7) μm](P<0.05). After scanner A occlusal wave scanning, the RMSE values of the mesial and distal finish lines [(33±5) and (50±12) μm] were significantly lower than those of parallel scanning group (P<0.05). After buccal and lingual wave scanning, the RMSE values of local finish lines in the mesial, distal, buccal and lingual regions [(37±3), (50±6), (28±6) and (29±8) μm] were significantly lower than those in parallel scanning group [(45±9), (63±7), (38±3) and (40±3) μm] (P<0.05). No significant difference was found in the RMSE values of the mesial, distal, buccal and lingual regions of scanner B between parallel scanning group, occlusal wave scanning group and buccolingual scanning group (P>0.05). Conclusions: The scanning trueness of the full crown preparation finish line obtained by the active triangulation scanning equipment can be improved by changing the scanning method to wave scanning.
Humans
;
Imaging, Three-Dimensional
;
Dental Impression Technique
;
Computer-Aided Design
;
Dental Care
;
Crowns
3.Prediction, analysis and application of learning curve of tooth preparation for all ceramic crowns of maxillary central incisors.
Si Yu WU ; Ya Ning LI ; Xiao ZHANG ; Long Wei LV ; Yun Song LIU ; Hong Qiang YE ; Yong Sheng ZHOU
Journal of Peking University(Health Sciences) 2023;55(1):108-113
OBJECTIVE:
To predict the learning curve of tooth preparation for all ceramic crowns of maxillary central incisors on phantom head simulators for graduate students participating in standardized dental resident training based on the modified Wright learning curve model, then to analyze and applicate the learning curve.
METHODS:
Twelve graduate students participating in standardized dental resident training were selected to prepare the resin maxillary central incisors on phantom head simulators for all ceramic crowns 4 times. The results of preparation were evaluated by 3 prosthetic experts with at least 10 years' experience focusing on the reduction, contour, taper, shoulder, finish line, margin placement, adjacent tooth injury, and preparation time for tooth preparation. The learning rate of tooth preparation was calculated by scores of tooth preparation of 4 times. The learning curve of tooth preparation was predicted based on the modified Wright learning curve model. According to the criteria of standardized training skill examinations for dental residents in Beijing, 80 was taken as the qualified standard score. The minimum training times for tooth preparation to satisfy the qualified standard score (80) was calculated, to analyze the characteristics of learning curve and evaluate the effectiveness of tooth preparation.
RESULTS:
The scores of 4 tooth preparation were 64.03±7.80, 71.40±6.13, 74.33±5.96, and 75.98±4.52, respectively. The learning rate was (106±4)%, which showed the learning curve an upward trend. There were no significant differences between the qualified standard score and the predicted scores of tooth preparation from the 5th preparation to the 13th preparation (P > 0.05). The predicted score of the 14th preparation was higher than the qualified standard score (P < 0.05).
CONCLUSION
The trend of the learning curve of tooth preparation for all ceramic crowns of maxillary central incisors on phantom head simulators for graduate students participating in standardized dental resident training is upward, which predicts the minimum training times higher than the qualified standard score is 14 times.
Humans
;
Tooth Preparation, Prosthodontic/methods*
;
Incisor
;
Learning Curve
;
Crowns
;
Tooth Preparation
;
Ceramics
;
Dental Porcelain
;
Dental Prosthesis Design
4.Simultaneous implantation and tooth preparation technology guided by 3D-printed guide.
Nan HU ; Chunxu LIU ; Jing GAO ; Chenyang XIE ; Jiayi YU ; Luming JIA ; Haiyang YU
West China Journal of Stomatology 2023;41(4):483-490
Using digital technologies in concurrently performing missing tooth implantation and preparation of remaining teeth is a solution to reduce the number of visits and improve efficiency. This paper proposes a digital process for simultaneously implanting and preparing teeth. It integrates implant surgical guide and 3D-printed tooth preparation guide into a single guide and completes guided implant placement and precise tooth preparation. Based on "repair-oriented" virtual implant planning, the implant surgical guide can improve the efficiency and predictability of implant placement, and its linear accuracy is about 1 mm. The tooth preparation guide precisely guides tooth preparation and restoration space visualization, ensuring the quality of the tooth preparation. The two guides have different design accuracy requirements, and thus their combination improves the overall guiding accuracy requirements. The concurrent application of the two guides minimizes the clinical operation time, number of visits, and economic burden of patients.
Humans
;
Surgery, Computer-Assisted
;
Dental Implantation, Endosseous
;
Printing, Three-Dimensional
;
Technology
;
Tooth Preparation
;
Computer-Aided Design
;
Dental Implants
;
Imaging, Three-Dimensional
;
Cone-Beam Computed Tomography
5.Independent innovation research, development and transformation of precise bionic repair technology for oral prosthesis.
Yu Chun SUN ; Yu Qing GUO ; Hu CHEN ; Ke Hui DENG ; Wei Wei LI
Journal of Peking University(Health Sciences) 2022;54(1):7-12
According to the fourth national oral health epidemiological survey report (2018), billions of teeth are lost or missing in China, inducing chewing dysfunction, which is necessary to build physiological function using restorations. Digital technology improves the efficiency and accuracy of oral restoration, with the application of three-dimensional scans, computer-aided design (CAD), computer-aided manufacturing (CAM), bionic material design and so on. However, the basic research and product development of digital technology in China lack international competitiveness, with related products basically relying on imports, including denture 3D design software, 3D oral printers, and digitally processed materials. To overcome these difficulties, from 2001, Yuchun Sun's team, from Peking University School and Hospital of Stomatology, developed a series of studies in artificial intelligence design and precision bionics manufacturing of complex oral prostheses. The research included artificial intelligence design technology for complex oral prostheses, 3D printing systems for oral medicine, biomimetic laminated zirconia materials and innovative application of digital prosthetics in clinical practice. The research from 2001 to 2007 was completed under the guidance of Prof. Peijun Lv and Prof. Yong Wang. Under the support of the National Natural Science Foundation of China, the National Science and Technology Support Program, National High-Tech R & D Program (863 Program) and Beijing Training Project for the Leading Talents in S & T, Yuchun Sun's team published over 200 papers in the relevant field, authorized 49 national invention patents and 1 U.S. invention patent and issued 2 national standards. It also developed 8 kinds of core technology products in digital oral prostheses and 3 kinds of clinical diagnosis and treatment programs, which significantly improved the design efficiency of complex oral prostheses, the fabrication accuracy of metal prostheses and the bionic performance of ceramic materials. Compared with similar international technologies, the program doubled the efficiency of bionic design and manufacturing accuracy and reduced the difficulty of diagnosis and cost of treatment and application by 50%, with the key indicators of those products reaching the international leading level. This program not only helped to realize precision, intelligence and efficiency during prostheses but also provided functional and aesthetic matches for patients after prostheses. The program was rewarded with the First Technical Innovation Prize of the Beijing Science and Technology Awards (2020), Gold Medal of Medical Research Group in the First Medical Science and Technology Innovation Competition of National Health Commission of the People's Republic of China (2020) and Best Creative Award in the First Translational Medical Innovation Competition of Capital (2017). This paper is a review of the current situation of artificial intelligence design and precision bionics manufacturing of complex oral prosthesis.
Artificial Intelligence
;
Bionics
;
Computer-Aided Design
;
Dental Prosthesis Design
;
Humans
;
Printing, Three-Dimensional
;
Prostheses and Implants
6.Application evaluation of prefabricated rigid connecting bar in implants immediate impression preparation of edentulous jaw.
Juan WANG ; Hua Jie YU ; Jing De SUN ; Li Xin QIU
Journal of Peking University(Health Sciences) 2022;54(1):187-192
OBJECTIVE:
To compare the operation complexity and accuracy of traditional splint impression technique and impression technique with prefabricated rigid connecting bar system for full-arch implants-supported fixed protheses in vitro.
METHODS:
Standard mandibular edentulous model with six implant analogs was prepared. The implants were placed at the bone level and multiunit abutments screwed into the implants. Two impression techniques were performed: the traditional splint impression technique was used in the control group, and the rigid connecting bar system was used in the test group. In the control group, impression copings were screwed into the multiunit abutments and connected with autopolymerizing acrylic resin. Open tray impression was fabricated with custom tray and polyether. In the test group, cylinders were screwed into the multiunit abutments. Prefabricated rigid bars with suitable length were selected and connected to the cylinders with small amount of autopolymerizing acrylic resin, and open tray impression was obtained. Impression procedures were repeated 6 times in each group. The working time of the two impression methods were recorded and compared. Analogs were screws into the impressions and gypsum casts were poured. The gypsum casts and the standard model were transferred to stereolithography (STL) files with model scanner. Comparative analysis of the STL files of the gypsum casts and the standard model was carried out and the root mean square (RMS) error value of the gypsum casts of the control and test groups compared with the standard model was recorded. The trueness of the two impression techniques was compared.
RESULTS:
The work time in the test group was significantly lower than that in the control group and the difference was statistically significant [(984.5±63.3) s vs. (1 478.3±156.2) s, P < 0.05]. Compared with the standard model, the RMS error value of the implant abutments in the test group was (16.9±5.5) μm. The RMS value in the control group was (20.2±8.0) μm. The difference between the two groups was not significant (P>0.05).
CONCLUSION
The prefabricated rigid connecting bar can save the chair-side work time in implants immediate loading of edentulous jaw and simplify the impression process. The impression accuracy is not significantly different from the traditional impression technology. The impression technique with prefabricated rigid connecting bar system is worthy of clinical application.
Acrylic Resins
;
Calcium Sulfate
;
Dental Implants
;
Dental Impression Materials
;
Dental Impression Technique
;
Humans
;
Jaw, Edentulous
;
Models, Dental
;
Mouth, Edentulous
7.Initial establishment of digital reference standardized crown models of the primary teeth.
Sha Wei FENG ; Hui GUO ; Yong WANG ; Yi Jiao ZHAO ; He LIU
Journal of Peking University(Health Sciences) 2022;54(2):327-334
OBJECTIVE:
To explore the construction process of the digital reference crown models, and to initially establish the digital reference crown models of the primary teeth to lay the foundation for the establishment of the standardized crown models and the future related applications of computer-aided design/computer-aided manufacture (CAD/CAM) technology to pediatric dentistry.
METHODS:
This study randomly selected children who were caries free, aged from 4 to 5 years in several kindergartens of Haidian District of Beijing.Plaster dental models were made for the children after taking complete impressions.The digital dental models were reconstructed by using the three-dimensional (3D) dental model scanner.And then, Geomagic Studio, a 3D reverse engineering software, was employed to extract the single dental crown data, the mesiodistal and buccolingual diameters and the height of the crowns were measured.The object was reduced or enlarged by a numerical factor, and then the size of each dental crown was standardized.A total of 3-5 points features on the crown were created, and all the objects were aligned through the functions of feature-based alignment.Finally, through average-based object creation and smoothing, the digital models of reference crowns of the primary teeth were established.
RESULTS:
A total of 40 plaster dental models from 16 boys and 26 girls were selected out for our further study.The digital dental models were reconstructed, and the mesiodistal and buccolingual diameters and the height of the crowns were measured by using reverse engineering technology.Comparing the results of using mesiodistal diameter, buccolingual diameter and height as the standards, we chose the mesiodistal diameters of crowns to do the standardization, and successfully established the digital reference models of 20 primary teeth crowns with detailed surface characteristics.
CONCLUSION
In this study, the digital reference crown models of the primary teeth were established by reverse engineering technology, providing reference value for the standardized crown models and application for clinical practice, scientific research and teaching.Furthermore, this study also contributes to the extensive application of CAD/CAM technology in pediatric dentistry and the development of CAD/CAM dental systems with independent intellectual property rights.
Child
;
Computer-Aided Design
;
Crowns
;
Dental Prosthesis Design
;
Female
;
Humans
;
Male
;
Software
;
Tooth Crown
;
Tooth, Deciduous
8.Accuracy analysis of full-arch implant digital impressions when using a geometric feature.
Yi Fang KE ; Yao Peng ZHANG ; Jun Kai CHEN ; Hu CHEN ; Yong WANG ; Yu Chun SUN
Chinese Journal of Stomatology 2022;57(2):162-167
Objective: To evaluate the effect of adding a geometric feature on the accuracy of digital impressions obtained by intraoral scanners for implant restoration of edentulous jaw quantitatively. Methods: A dentiform model of the maxilla of completely edentulous arch with 6 implant analogs+scan bodies (No. 1-6) was selected as the reference model. Without geometric feature, the dentiform model was scanned by dental model scanner and repeated for 5 times as true value group. Before and after adding the geometric feature, the same operator used intraoral scanner A (Trios 3) and B (Aoralscan 2) to scan the dentiform model with the same scanning path. Each type of intraoral scanner scanned 10 times and ".stl " datas were obtained. The results were imported into reverse engineering software (Geomagic Studio 2015). The linear distances of center point of upper plane between sacn body 1 to 6 was calculated, denoted as D12, D13, D14, D15 and D16. Trueness was the absolute value subtracted from the measured value of the intraoral scanner groups and true value; precision was the absolute value of pairwise subtraction of the measured values in the intraoral scanner groups.The smaller the value, the better the accuracy or precision.With or without the feature, all scan data were statistically analyzed, and the effect of adding geometric feature on the trueness and precision of the two intraoral scanners were evaluated. Results: As for intraoral scanner A, with the feature in place, significant differences were found in D14, D15, D16 for tureness(t=2.66, 2.75, 2.95, P<0.05); the trueness for D16 decreased from (101.9±47.1) μm to (49.6±30.3) μm. On the other hand, with features on the edentulous area, the precision was significantly increased in D15 and D16 (U=378.00, 672.00, P<0.05); the precision for D15 decreased from 40.8 (45.1) μm to 13.1 (17.0) μm. As for intraoral scanner B, the trueness of D12, D13 and D14 after adding geometric features was significantly better than before (t=3.02, 2.66, U=22.00, P<0.05). With feature on the edentulous area, the trueness for D13 decreased from (116.6±41.2) μm to (70.8±35.5) μm. There was no statistical significance in the trueness of D15 and D16 with or without geometric feature (P>0.05), however, the precision of D15 and D16 after adding geometric feature was significantly better than before (U=702.00, 489.00,P<0.05). The precision of D16 decreased from 112.5 (124.7) μm to 35.9 (85.8) μm. Conclusions: The use of geometric feature in edentulous space improves the trueness and precision of the different principle intraoral scanners tested.
Computer-Aided Design
;
Dental Implants
;
Dental Impression Technique
;
Imaging, Three-Dimensional
;
Models, Dental
9.Accuracy of photogrammetry and conventional impression techniques for complete-arch implant rehabilitation: an in vitro comparative study.
Yu Jie SUN ; Bo Wen MA ; Xin Xin YUE ; Xiao LIN ; Wei GENG
Chinese Journal of Stomatology 2022;57(2):168-172
Objective: To compare the accuracy of photogrammetry and conventional impression techniques for complete-arch implant rehabilitation. Methods: An edentulous maxillary stone cast containing 8 screw-retained implant abutment replicas was derived from a 74-year-old male patient who visited the Department of Dental Implant Center, Capital Medical University School of Stomatology in September 2019. The stone cast was copied through the open-tray splinted impression, and the copied cast was used as the master cast for this study. The abutment-level impressions of master cast were made by photogrammetry (PG) and the conventional impression technique (CNV) by one attending doctor. Group PG: after which scan bodies were connected to each implant replica, a photogrammetry system was used to obtain digital impressions of the master cast (n=10); Group CNV: conventional open-tray splinted impression technique was performed to fabricate conventional definitive casts (n=10). After connecting the scan bodies onto each implant replicas, the master cast and the 10 definitive casts from group CNV were digitized with a laboratory reference scanner. All data of group PG, group CNV and mater cast were saved as ".stl" files. For all test scans and reference scan, the three-dimensional information of scan bodies were converted to implant abutment replicas using a computer aided design software (Exocad). The data of the group PG and the group CNV were respectively registered with the reference data (trueness analysis) and pairwise within group (precision analysis) for accuracy evaluation in a three-dimensional analysis software (Geomagic Control X). Results: The trueness and precision of group PG [(17.33±0.34) and (2.50±0.79) μm ] were significantly statistically better than those of group CNV [(24.30±4.16) and (26.12±4.54) μm] respectively (t=-5.29 and -34.35, P<0.001). Conclusions: For complete-arch implant abutment-level impression, photogrammetry produces significantly better accuracy than conventional impression technique.
Aged
;
Computer-Aided Design
;
Dental Implants
;
Dental Impression Materials
;
Dental Impression Technique
;
Humans
;
Models, Dental
;
Photogrammetry
10.Accuracy and retention of denture bases fabricated by injection molding, milling, and three-dimensional printing.
Dan LI ; Sheng Tao YANG ; Quan YUAN ; An Chun MO ; Li YUE
Chinese Journal of Stomatology 2022;57(9):927-931
Objective: To compare the accuracy and retention of denture bases fabricated by injection molding, milling, and three-dimensional (3D) printing fabricating, in order to provide some references for clinical practice. Methods: A maxillary edentulous jaw model made was used to duplicated 10 working casts. The casts were numbered and scanned. The wax pattern was designed by digital ways and conventional methods and then the denture bases were fabricated by injection molding, milling, and 3D printing. The tissue surface of experimental denture base was obtained using a dental laboratory scanner. The deviation between the tissue surface of the fabricated denture bases and the working model was evaluated. A digital force gauge was used to measure the traction force. Results: The milling group [(0.076±0.026) mm] was more accurate than the 3D printing group [(0.117±0.041) mm] (P<0.05) and the injection group [(0.120± 0.025) mm] (P<0.05). The accuracy of 3D printing group and that of injection group were not statistically significant (P>0.05). The milling group [(9.55±2.44) N] demonstrated greater retentive force than 3D printing group [(5.19±0.06) N] and injection molding group [(1.52±0.52) N] (P<0.05). Conclusions: The denture base fabricated by milling was more accurate and showed the greatest retentive force than the other groups. And 3D printing group showed better retentive force than the injection molding group. Both digital manufacturing methods can meet the requirements of clinical application.
Computer-Aided Design
;
Denture Bases
;
Humans
;
Jaw, Edentulous
;
Maxilla
;
Printing, Three-Dimensional

Result Analysis
Print
Save
E-mail