1.Effect of minimally invasive anterior lateral approach for total hip arthroplasty on serum type I collagen propeptide, tartrate-resistant acid phosphatase 5b and hip joint function in patients with femoral neck fracture.
China Journal of Orthopaedics and Traumatology 2019;32(12):1117-1122
OBJECTIVE:
To analyze the level of serum N-terminal propeptide of type I precollagen (PINP) and tartrate resistant acid phosphatase 5b(TRACP-5b) in patients with femoral neck fracture(FNF) after minimally invasive anterior lateral approach with total hip arthroplasty and the effects of hip function.
METHODS:
From September 2016 to May 2017, 98 cases of femoral neck fracture were divided into control group and observation group, 49 cases in each group. There were 49 patients in control group, including 30 males and 19 females, ranging in age from 63 to 72 years old, who underwent minimally invasive anterolateral total hip arthroplasty. There were 49 patients in observation group, including 29 males and 20 females, ranging in age from 62 to 73 years old, who underwent minimally invasive anterolateral total hip arthroplasty. The perioperative conditions(operation time, bleeding volume, incision length, hospitalization time), bone metabolism indexes including PINP, TRACP-5b, fibroblast growth factor(FGF), bone gla-protein(BGP), propetide carboxy-terminal procollagen (PICP), bone-specific alkaline phosphatase(BAP), and pain mediators such as prostaglandin E2 (PGE2) and 5-hydroxytrytamine (5-HT) levels were compared between the two groups. The hip joint function and complications were evaluated.
RESULTS:
The operation time of the observation group was longer than that of the control group(<0.05); there was no significant difference in bleeding volume, incision length and hospitalization time between two groups(>0.05). PINP, fibroblast growth factor, BGP, PICP and BAP in observation group were higher than those in control group 1 month after operation, and TRACP-5b was lower than those in control group(<0.05); PGE2 and 5-HT in observation group 1 month after operation were lower than those before operation, and lower than those in control group(<0.05). The excellent and good rate of hip function in observation group was higher than that in control group (<0.05), and the incidence of complications was not significantly different from that in the control group (>0.05).
CONCLUSIONS
Minimally invasive anterolateral approach total hip arthroplasty is safe and reliable, and can improve hip function, improve bone metabolism, promote fracture healing, alleviate pain in patients with femoral neck fracture, which is worthy of promotion.
Aged
;
Arthroplasty, Replacement, Hip
;
Collagen Type I
;
Female
;
Femoral Neck Fractures
;
surgery
;
Hip Joint
;
Humans
;
Male
;
Middle Aged
;
Minimally Invasive Surgical Procedures
;
Tartrate-Resistant Acid Phosphatase
;
Treatment Outcome
2.Preventive effect and mechanism of puerarin on rat models of disuse osteoporosis.
Kai LI ; Rong QIN ; Jia-le SHAO ; Yu-Hai GAO ; Jian ZHOU ; Ke-Ming CHEN
China Journal of Chinese Materia Medica 2019;44(3):535-540
To investigate the preventive effect and possible mechanism of puerarin(Pur) in rat model of disuse osteoporosis(DOP),thirty healthy Wistar female rats of 2 months old were randomly divided into control group(Control), hindlimb suspension group(HLS), and puerarin group(HLS+Pur) in hindlimb suspension, with 10 rats in each group. A disuse osteoporosis model was established by tail suspension method, and 15.4 mg·kg~(-1) puerarin suspension was administered to HLS+Pur group every day, and the same volume of distilled water was administered to Control group and HLS group respectively. After 28 days, the rats were sacrificed by abdominal aorta blood collection, the main organs of the rats were removed, and the bone tissues of the rats were dissected. The organ index of the rats was calculated and the histopathology of the organs was observed under microscope. Bone mineral density test and bone biomechanical experiment were performed. Bone histomorphometry results were observed after bone tissue sectioning, and serum biochemical markers of bone metabolism were determined. There was no significant difference in organ index between the groups. There was no obvious abnormality in the pathological examination of the organs. The results of bone mineral density showed that puerarin could significantly increase the bone density of the tibia and vertebrae caused by hindlimb suspension. The mechanical parameters experiments showed that puerarin could effectively increase the maximum load and elastic modulus of the tibia and vertebrae. Fluorescence labeling showed that the fluorosis interval increased and the bone formation increased during puerarin treatment. The VG staining results showed that compared with the HLS group, in the puerarin group, the number of trabecular bone increased, the thickness of the trabecular bone became thicker, and the bone separation became smaller, which greatly improved the bone microstructure after hindlinb suspension. In addition, serum biochemical indicators showed that puerarin could promote bone formation index bone calcium. The content of osteocalcin(OC) increased and inhibited the formation of tartrate-resistant acid phosphatase 5 b(TRACP 5 b). Puerarin has a preventive effect in the rat model of disuse osteoporosis and its effect is good, and its mechanism may be related to promoting bone formation and inhibiting bone resorption.
Animals
;
Bone Density
;
Female
;
Isoflavones
;
pharmacology
;
Osteocalcin
;
metabolism
;
Osteoporosis
;
drug therapy
;
Rats
;
Rats, Wistar
;
Tartrate-Resistant Acid Phosphatase
;
metabolism
3.Effect of resveratrol on peak bone mass in growing rats.
Huirong XI ; Yuhai GAO ; Fangfang YANG ; Wenyuan LI ; Huiping MA ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2017;46(6):578-584
Objective: To investigate the effect of resveratrol on peak bone mineral density and bone mass in growing rats. Methods: Thirty-six female healthy Wistar rats were randomly divided into control group, icariin group and resveratrol group with 12 rats in each group. Icariin (25 mg·kg-1·d-1), resveratrol (8.4 mg·kg-1·d-1) or equal volume of distilled water were given by gavage to icariin group, resveratrol group and control group, respectively. The rats were sacrificed after 12 weeks. The organ indexes were calculated and pathology sections were observed; the bone mineral density (BMD), bone biomechanics, serum bone metabolism index, and results of micro-CT scan were analyzed. Results: During the experiment, the body weight of rats showed an increasing trend and there was no significant difference among three groups (P0.05). There were no significant differences in organ index of vital organs and pathological changes among the groups (all P0.05). Compared with the control group, the whole body BMD, and the BMDs of femur and vertebrae in icariin and resveratrol groups were significantly increased after 12 weeks (all P<0.05). The maximum load values of femur and vertebrae, as well as elastic modulus of vertebrae in icariin and resveratrol groups were significantly higher than those in control group (P<0.05 or P<0.01). Micro-CT scan showed that the volumetric BMD, number of trabecular, trabecular thickness and bone volume/tissue volume of the cancellous bone in icariin and resveratrol groups were significantly higher and the trabecular separation was significantly lower than those in the control group (P<0.05 or P<0.01); while there was no significant difference in volumetric BMD of cortical bone for femur. The contents of osteocalcin in icariin and resveratrol groups were significantly higher than those in control group (all P<0.05), while the contents of tartarte-resistant acid phosphatase 5b (TRACP5b) were significantly lower than those in control group (all P<0.05).Conclusion: Resveratrol can inhibit bone resorption and enhance bone formation, so as to improve the peak bone mass and bone density, enhance bone strength and improve the microstructure of bone tissue in young rats.
Animals
;
Bone Density
;
drug effects
;
Bone and Bones
;
diagnostic imaging
;
drug effects
;
Female
;
Femur
;
drug effects
;
Osteocalcin
;
genetics
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Resveratrol
;
pharmacology
;
Tartrate-Resistant Acid Phosphatase
;
genetics
;
metabolism
4.Correlation of cytogenetic changes with VEGF and TRacp-5b levels among 60 elderly patients with multiple myeloma.
Ling CEN ; Yu JIANG ; Xiuwen ZHANG ; Hongying CHAO ; Rong XIAO ; Wenmin HAN ; Tao CHEN ; Xuzhang LU
Chinese Journal of Medical Genetics 2016;33(5):602-605
OBJECTIVETo assess the correlation of cytogenetic changes with serum vascular endothelial growth factor (VEGF) and serum tartrate resistant acid phosphatase (TRacp-5b) levels among elderly patients with multiple myeloma (MM).
METHODSChromosomal changes were analyzed with a modified culturing method in the presence of IL-6. Serum levels of VEGF and TRacp-5b were determined with enzyme-linked immunosorbent assays (ELISA).
RESULTSAmong the 60 MM patients, chromosomal abnormalities were found in 27 cases, including 22 with numerical abnormalities and 15 with structural abnormalities. Many patients had both numerical and structural abnormalities. For 33 patients with a normal karyotype, the levels of VEGF and TRacp-5b were 117.35 ± 55.26 pg/mL and 4.15 ± 2.15 U/L, respectively, while for 27 patients with an abnormal karyotype, the levels of VEGF and TRacp-5b were 190.26 ± 85.74 pg/ml and 5.96 ± 2.24 U/L, respectively. The difference between the two groups was significant (P<0.05).
CONCLUSIONCompared with MM patients with a normal karyotype, the levels of VEGF and TRacp-5b are higher in those with cytogenetic abnormalities.
Aged ; Aged, 80 and over ; Chromosome Aberrations ; Cytogenetic Analysis ; Female ; Humans ; In Situ Hybridization, Fluorescence ; Karyotype ; Male ; Multiple Myeloma ; blood ; diagnosis ; genetics ; Tartrate-Resistant Acid Phosphatase ; blood ; Vascular Endothelial Growth Factor A ; blood
5.Effects of icariin total flavonoids capsule on bone mineral density and bone histomorphometry in growing rats.
Yuhai GAO ; Fangfang YANG ; Huirong XI ; Wenyuan LI ; Ping ZHEN ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2016;45(6):581-586
To investigate the effect of icariin total flavonoids capsules (ITFC) on bone mineral density (BMD) and bone histomorphometry in growing rats and its anti-osteoporosis mechanism.Thirty female SD rats were randomly divided into 3 groups:normal control group, ITFC-1 group and ITFC-2 group. Rats in ITFC-1 group and ITFC-2 group were fed with 50 mg·kg·dor 100 mg·kg·dITFC, respectively, and those in normal control group were fed with equal volume of distilled water. The whole body BMD was measured after 4, 8 and 12 weeks, and BMDs of the right femur and lumbar vertebrae were measured after 12 weeks. The serum levels of tartaric acid phosphatase 5b (TRACP 5b) and bone alkaline phosphatase (BALP) were measured by ELISA. Bone morphometry was performed on the right tibia.There were no significant differences in the body weight increase between normal control group and two ITFC groups (all>0.05). There were also no significant differences in whole body BMDs after 4 and 8 weeks between normal control group and ITFC groups (all>0.05). After 12 weeks, the whole body BMD, BMD of bone, serum BALP level and trabecular area in ITFC-1 group and ITFC-2 group were significantly higher, trabecular separation was significantly lower than that in normal control group (all<0.05); and the trabecular width and the number in ITFC-2 group were also significantly higher, and serum TRACP 5b level was significantly lower than that in normal control group (all<0.05). The BMD of bone, serum BALP level, trabecular number and area in ITFC-2 group were significantly higher, and serum TRACP 5b level was significantly lower than that in ITFC-1 group (all<0.05).ITFC can prevent osteoporosis by increasing bone density and bone formation, decreasing bone resorption and improving microstructure of bone.
Alkaline Phosphatase
;
blood
;
drug effects
;
Animals
;
Bone Density
;
drug effects
;
Bone Resorption
;
drug therapy
;
Cancellous Bone
;
anatomy & histology
;
Dose-Response Relationship, Drug
;
Female
;
Femur
;
anatomy & histology
;
Flavonoids
;
pharmacology
;
Lumbar Vertebrae
;
anatomy & histology
;
Osteogenesis
;
drug effects
;
Osteoporosis
;
prevention & control
;
Rats
;
Rats, Sprague-Dawley
;
growth & development
;
Tartrate-Resistant Acid Phosphatase
;
blood
;
drug effects
;
Tibia
;
anatomy & histology
6.Effect of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro.
Yong GUO ; Yang WANG ; Yinqin LIU ; Haitao WANG ; Chun GUO ; Xizheng ZHANG
Chinese Journal of Traumatology 2015;18(3):150-156
PURPOSETo investigate the influence of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro.
METHODSPrimary osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs, cultured in osteoinductive medium) and RAW264.7 cells cultured in osteoclast inductive medium were all subjected to a 1000 μstrain (μs) at 1 Hz cyclic mechanical stretch for 30 min (twice a day).
RESULTSAfter mechanical stimulation, the alkaline phosphatase (ALP) activity, osteocalcin protein level of the osteoblasts and BMSCs were all enhanced, and the mRNA levels of ALP and collagen type I increased. Additionally, extracellular-deposited calcium of both osteoblasts and BMSCs increased. At the same time, the activity of secreted tartrate-resistant acid phosphatase, the number of tartrate-resistant acid phosphatase-positive multinucleated cells, matrix metalloproteinase-9 protein levels of RAW264.7 cells and the extracellular calcium solvency all decreased.
CONCLUSIONThe results demonstrated that 1000 μs cyclic mechanical loading enhanced osteoblasts activity, promoted osteoblastic differentiation of BMSCs and restrained osteoclastogenesis of RAW264.7 cells in vitro.
Animals ; Biomechanical Phenomena ; Cell Differentiation ; Cells, Cultured ; Mice ; Mice, Inbred C57BL ; Osteoblasts ; cytology ; Osteoclasts ; physiology ; Osteogenesis ; physiology ; Tartrate-Resistant Acid Phosphatase ; metabolism
7.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
pathology
;
Cell Differentiation
;
Coculture Techniques
;
Gene Expression Regulation
;
Isoenzymes
;
genetics
;
metabolism
;
Male
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase
;
Vascular Calcification
;
genetics
;
metabolism
;
pathology
8.Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss.
Ujjal K BHAWAL ; Hye-Jin LEE ; Kazumune ARIKAWA ; Michiharu SHIMOSAKA ; Masatoshi SUZUKI ; Toshizo TOYAMA ; Takenori SATO ; Ryota KAWAMATA ; Chieko TAGUCHI ; Nobushiro HAMADA ; Ikuo NASU ; Hirohisa ARAKAWA ; Koh SHIBUTANI
International Journal of Oral Science 2015;7(4):242-249
Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1β, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor κB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases.
Acid Phosphatase
;
drug effects
;
Alveolar Bone Loss
;
microbiology
;
prevention & control
;
Animals
;
Anti-Bacterial Agents
;
therapeutic use
;
Anti-Inflammatory Agents
;
therapeutic use
;
Bacteroidaceae Infections
;
microbiology
;
prevention & control
;
Bone Density Conservation Agents
;
therapeutic use
;
Cathepsin K
;
drug effects
;
Interleukin-1beta
;
drug effects
;
Interleukin-6
;
analysis
;
Interleukin-8
;
drug effects
;
Isoenzymes
;
drug effects
;
Macrophage Colony-Stimulating Factor
;
drug effects
;
Male
;
Matrix Metalloproteinase 9
;
drug effects
;
Osteoclasts
;
drug effects
;
Periodontitis
;
microbiology
;
prevention & control
;
Porphyromonas gingivalis
;
drug effects
;
RANK Ligand
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Fluoride
;
therapeutic use
;
Tartrate-Resistant Acid Phosphatase
;
Transcription Factors
;
drug effects
;
X-Ray Microtomography
;
methods
9.Effect of naringin on osteoclast differentiation.
Feng-bo LI ; Xiao-lei SUN ; Jian-xiong MA ; Yang ZHANG ; Bin ZHAO ; Yan-jun LI ; Xin-long MA
China Journal of Chinese Materia Medica 2015;40(2):308-312
OBJECTIVETo discuss the effect of Drynariae Rhizoma's naringin on osteoclasts induced by mouse monocyte RAW264.7.
METHODRAW264.7 cells were induced by 100 μg x L(-1) nuclear factor-κB receptor activator ligand (RANKL) and became mature osteoclasts, which were identified through TRAP specific staining and bone resorption. MTT method was sued to screen and inhibit and the highest concentration of osteoclasts. After being cultured with the screened medium containing naringin for 5 days, positive TRAP cell counting and bone absorption area analysis were adopted to observe the effect of naringin on the formation of osteoclast sells and the bone absorption function. The osteoclast proliferation was measured by flow cytometry. The effects of RANK, TRAP, MMP-9, NFATc1 and C-fos mRNA expressions on nuclear factor-κB were detected by RT-PCR.
RESULTNaringin could inhibit osteoclast differentiation, bone absorption function and proliferation activity of osteoclasts, significantly down-regulate RANK, TRAP, MMP-9 and NFATc1 mRNA expressions in the osteoclast differentiation process, and up-regulate the C-fos mRNA expression.
CONCLUSIONNaringin could inhibit osteoclast differentiation, proliferation and bone absorption function. Its mechanism may be achieved by inhibiting the specific gene expression during the osteoclast differentiation process.
Acid Phosphatase ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flavanones ; pharmacology ; Isoenzymes ; metabolism ; Matrix Metalloproteinase 9 ; genetics ; Mice ; NFATC Transcription Factors ; genetics ; Osteoclasts ; cytology ; drug effects ; Tartrate-Resistant Acid Phosphatase
10.Effects of 50 Hz sinusoidal electromagnetic field with different intensities on rat peak bone mass.
Yuhai GAO ; Kui CHENG ; Baofeng GE ; Ping ZHEN ; Jian ZHOU ; Xiaoni MA ; Shaofeng LI ; Keming CHEN
Journal of Biomedical Engineering 2015;32(1):116-136
Studying effects of 50 Hz sinusoidal electromagnetic fields (SEMFs) with different intensities on peak bone mass (PBM) of rats may provide a theoretical basis for application of electromagnetic clinical field. 30 female SD rats, 6 weeks of age, were randomly divided into three groups: the control group, 0.1 mT electromagnetic field group (EMFs) and 0.6 mT EMFs. The EMFs groups were treated for 3 h/day. After 8 weeks, we examined their bone mineral densities (BMD) , measured their bone biomechanical properties, and made serum levels of osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRACP 5b), and histomorphometry. It was found that the BMD (P < 0.01), maximum mechanical load (P < 0.01) in the 0.1 mT group were significantly higher than those in the control group, and Yield strength (P < 0.05), the analyses of serum bone turnover markers and histomorphometric parameters were better than those in the control group (P < 0.05). However, the 0.6 mT group did not have significantly difference comparing with that in the control group. This study proved that 50 Hz 0.1 mT SEMFs can increased BMD, bone strength, and bone tissue microstructure. Therefore, 50 Hz 0.1 mT SEMFs can improve peak bone mass of rats.
Acid Phosphatase
;
blood
;
Animals
;
Bone Density
;
Bone and Bones
;
physiology
;
Electromagnetic Fields
;
Female
;
Isoenzymes
;
blood
;
Osteocalcin
;
blood
;
Rats
;
Rats, Sprague-Dawley
;
Tartrate-Resistant Acid Phosphatase

Result Analysis
Print
Save
E-mail