1.Identification of novel biomarkers for varicocele using iTRAQ LC-MS/MS technology.
Xianfeng LU ; Na LI ; Lufang LI ; Yongai WU ; Xuefeng LYU ; Yingli CAO ; Jianrong LIU ; Qin QIN
Chinese Medical Journal 2024;137(3):371-372
2.Advances of peptide-centric data-independent acquisition analysis algorithms and software tools.
Yingying ZHANG ; Kunxian SHU ; Cheng CHANG
Chinese Journal of Biotechnology 2023;39(9):3579-3593
Data-independent acquisition (DIA) is a high-throughput, unbiased mass spectrometry data acquisition method which has good quantitative reproducibility and is friendly to low-abundance proteins. It becomes the preferred choice for clinical proteomic studies especially for large cohort studies in recent years. The mass-spectrometry (MS)/MS spectra generated by DIA is usually heavily mixed with fragment ion information of multiple peptides, which makes the protein identification and quantification more difficult. Currently, DIA data analysis methods fall into two main categories, namely peptide-centric and spectrum-centric. The peptide-centric strategy is more sensitive for identification and more accurate for quantification. Thus, it has become the mainstream strategy for DIA data analysis, which includes four key steps: building a spectral library, extracting ion chromatogram, feature scoring and statistical quality control. This work reviews the peptide-centric DIA data analysis procedure, introduces the corresponding algorithms and software tools, and summarizes the improvements for the existing algorithms. Finally, the future development directions are discussed.
Humans
;
Proteomics/methods*
;
Reproducibility of Results
;
Peptides/chemistry*
;
Software
;
Algorithms
;
Tandem Mass Spectrometry/methods*
;
Proteome/analysis*
3.Biochemical properties of Scedosporium aurantiacum extracellular elastase-like protease.
Yuanhuai PENG ; Xin GE ; Jianzhi YE ; Bei JIN ; Zhiping HAN
Chinese Journal of Biotechnology 2023;39(9):3800-3813
Extracellular elastase-like protease is one of the key virulence proteases of Scedosporium aurantiacum. To date, little is known about this enzyme in terms of genetic information, structure, properties and virulence mechanism due to the difficulties in purification caused by its low secretion amount, high specific activity, uncompleted genome sequencing and annotation. This work investigated the gene, structure and enzymatic properties of this enzyme. The S. aurantiacum elastase-like protease from the fungal culture supernatant was analyzed through tandem mass spectrometry (MS/MS) approach, illustrating its primary structure. Bioinformatics tools were employed to predict the conserved domain and tertiary structure, the enzymatic properties were also studied. It turned out that S. aurantiacum extracellular elastase-like protease demonstrated well hydrolysis towards elastin and bovine achilles tendon collagen, with Vmax of 18.14 μg/s and 17.57 μg/s respectively, better than fish scale gelatin, with the lowest hydrolysis effect on casein. Its activity towards elastin was lower than that of the elastase from porcine pancreas, with values of Kcat/Km of 3.541 (μg/s) and 4.091 (μg/s), respectively. It was an alkaline protease, with optimal pH 8.2 and temperature 37 oC. Zn2+ promoted the enzymatic activity while Ca2+, Mg2+, Na+, elastatinal and PMSF inhibited its activity. Its sequence was similar to Paecilomyces lilacinus secreted serine protease (PDB Entry: c3f7oB_) with multiple conserved fractions each containing more than 7 amino acids, thus suitable for design of PCR primer. This study increased our knowledge on S. aurantiacum extracellular elastase-like protease in terms of structure and enzymatic properties, and may facilitate later studies on protein expression and virulence mechanism.
Animals
;
Cattle
;
Pancreatic Elastase/genetics*
;
Elastin/genetics*
;
Tandem Mass Spectrometry
;
Serine Proteases/genetics*
4.Resource components and utilization values of different parts of Panax quinquefolium in Shandong province.
Rui LI ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2023;48(15):4097-4105
To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.
Ginsenosides/analysis*
;
Plant Roots/chemistry*
;
Tandem Mass Spectrometry/methods*
;
Panax/chemistry*
;
Chromatography, Liquid
;
Chromatography, High Pressure Liquid/methods*
;
Sugars
5.Mechanism of Qilongtian Capsules in treatment of acute lung injury based on network pharmacology prediction and experimental validation.
Ying XIE ; Xue-Rong SU ; Tong ZHOU ; Yi-Yao LIANG ; Yang-Qian WU ; Yi WAN ; Tu-Lin LU ; Xiao-Li ZHAO ; Zheng-Yan LI
China Journal of Chinese Materia Medica 2023;48(15):4187-4200
This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1β, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1β, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.
Humans
;
Tumor Necrosis Factor-alpha
;
Ginsenosides
;
Caspase 3
;
Matrix Metalloproteinase 9
;
Interleukin-6
;
Molecular Docking Simulation
;
Network Pharmacology
;
Reactive Oxygen Species
;
Tandem Mass Spectrometry
;
Acute Lung Injury/genetics*
;
Capsules
;
RNA, Messenger
;
Drugs, Chinese Herbal/pharmacology*
6.Chemical composition and antioxidant activity of different parts of Prunella vulgaris by UPLC-Q-TOF-MS/MS and UPLC.
Shao-Ru WU ; Wei-Hong FENG ; Kai-Ming CHEN ; Liang-Jun GUAN ; Liang-Mian CHEN ; Zhi-Min WANG ; Hui-Min GAO ; Zong-Hua SONG
China Journal of Chinese Materia Medica 2023;48(17):4569-4588
Prunellae Spica is the dried spica of Prunella vulgaris belonging to Labiatae and it is widely used in pharmaceutical and general health fields. As a traditional Chinese medicine cultivated on a large scale, it produces a large amount of non-medicinal parts, which are discarded because they are not effectively used. To analyze the chemical constituents in the different samples from spica, seed, stem, and leaf of P. vulgaris, and explore the application value and development prospect of these parts, this study used ultrahigh performance liquid chromatography-tandem quadrupoles time of flight mass spectrometry(UPLC-Q-TOF-MS/MS) to detect chemical constituents in different parts of P. vulgaris. As a result, 117 compounds were detected. Among them, 87 compounds were identified, including 32 phenolic acids, 8 flavonoids, and 45 triterpenoid saponins. Some new triterpenoid saponins containing the sugar chain with 4-6 sugar units were found. Further, multivariate statistical analysis was conducted on BPI chromatographic peaks of multiple batches of different parts, and the results showed that spica had the most abundant chemical constituents, including salviaflaside and linolenic acid highly contained in the seed and phenolic acids, flavonoids, and triterpenoid saponins in the stem and leaf. In general, the constituents in the spica were composed of those in the seed, stem, and leaf. UPLC was used to determine the content of 6 phenolic acids(danshensu, protocatechuic acid, protocatechuic aldehyde, caffeic acid, salviaflaside, and rosmarinic acid) in different parts. The content of other phenolic acids in the seed was generally lower than that in the spica except that of salviaflaside. The content of salviaflaside in the spica was higher than that in the stem and leaf, but the content of other phenolic acids in the spica was not significantly different from that in the stem. The content of protocatechuic aldehyde and caffeic acid in the spica was lower than that in the leaf. DPPH free radical scavenging method was used to detect the antioxidant activity of four parts, and there was no significant difference in the antioxidant activity between the spica and the stem and leaf, but that was significantly higher than the seed. Moreover, the antioxidant activity of these parts was correlated with the content of total phenolic acids. Based on the above findings, the stem and leaf of P. vulgaris have potential application value. Considering the traditional medication rule, it is feasible to use the whole plant as a medicine. Alternatively, salviaflaside, occurring in the seed, can be used as a marker compound for the quality evaluation of Prunellae Spica, if only using spica as the medicinal part of P. vulgaris, as described in the Chinese Pharmacopoeia(2020 edition).
Antioxidants/chemistry*
;
Tandem Mass Spectrometry/methods*
;
Prunella/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Caffeic Acids
;
Flavonoids/analysis*
;
Triterpenes/analysis*
;
Saponins
;
Sugars
7.New steroidal saponins from aerial parts of Paris polyphylla var. chinensis.
Zi-Lu ZHENG ; Xiao-Min TAN ; Liang-Jun GUAN ; Ru WANG ; Liang-Mian CHEN ; Zhi-Min WANG ; Hui-Min GAO
China Journal of Chinese Materia Medica 2023;48(17):4589-4597
The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.
Tandem Mass Spectrometry
;
Saponins/analysis*
;
Liliaceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Rhizome/chemistry*
;
Melanthiaceae
;
Molecular Structure
8.Discovery, isolation and structural identification of alkaloid glycosides in six traditional Chinese medicine such as Coptis chinensis.
Ru WANG ; Liang-Jun GUAN ; Liang-Mian CHEN ; Rui PENG ; Jing-Jing ZHU ; Xiao-Qian LIU ; Hui-Min GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2023;48(17):4598-4609
Alkaloids are important active ingredients occurring in many traditional Chinese medicines, and alkaloid glycosides are one of their existence forms. The introduction of saccharide units improves the water solubility of alkaloid glycosides thus presenting better biological activity.Because of the low content in plants, alkaloid glycosides have been not comprehensively studied. In this study, ultrahigh performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry(UPLC-QTOF-MS/MS) was employed to identify and analyze the alkaloid glycosides in Coptis chinensis, Phellodendron chinense, Menispermum dauricum, Sinomenium acutum, Tinospora sagittata and Stephania tetrandra. The results showed that except Tinospora sagittata, the other five herbal medicines contained alkaloid glycosides. Furthermore, the alkaloid glycosides in each herbal medicine were identified based on UV absorption spectra, quasimolecular ion peaks in MS, fragment ions information in the MS/MS, and previous literature reports. A total of 42 alkaloid glycosides were identified. More alkaloid glycosides were identified in C. chinensis and Menispermum dauricum, and eleven in C. chinensis were potential new compounds. Furthermore, the alkaloid glycosides in the water extract of C. chinensis were coarsely se-parated by macroporous adsorption resin, purified by column chromatography with D151 cation exchange resin, ODS and MCI, combined with semi-preparative high performance liquid chromatography. Two new alkaloid glycosides were obtained, and their structures were identified by mass spectrometry and NMR data as(S)-7-hydroxy-1-(p-hydroxybenzyl)-2,2-N,N-dimethyl-1,2,3,4-tetrahydroisoquinoline-6-O-β-D-glucopyranoside and(S)-N-methyltetrahydropalmatubine-9-O-β-D-glucopyranoside, respectively. This study is of great significance for enriching the information about the chemical composition and the in-depth development of C. chinensis. Meanwhile, it can provide a reference for rapid identification and isolation of alkaloid glycosides from other Chinese herbal medicines.
Glycosides/chemistry*
;
Medicine, Chinese Traditional
;
Tandem Mass Spectrometry/methods*
;
Coptis chinensis
;
Drugs, Chinese Herbal/chemistry*
;
Alkaloids/analysis*
;
Plant Extracts/chemistry*
;
Antineoplastic Agents
;
Plants, Medicinal/chemistry*
;
Water
;
Chromatography, High Pressure Liquid/methods*
;
Coptis/chemistry*
9.Quality evaluation of Lysimachiae Herba from different habitats based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis.
Yong-Yi ZHOU ; Hai-Jie CHEN ; Jia XUE ; Nan WU ; Jia-Huan YUAN ; Xun-Hong LIU ; Li-Si ZOU ; Cui-Hua CHEN ; Zhi-Chen CAI ; Wei YANG ; Jian-Ming CHENG
China Journal of Chinese Materia Medica 2023;48(17):4663-4674
A method based on ultra-high performance liquid chromatography coupled with triple quadrupole linear ion trap-tandem mass spectrometry(UHPLC-QTRAP-MS/MS) was developed for the simultaneous determination of 41 bioactive constituents of flavonoids, organic acids, nucleosides, and amino acids in Lysimachiae Herba. The content of multiple bioactive constituents was compared among the samples from different habitats. The chromatographic separation was performed in a Waters XBridge®C_(18) column(4.6 mm×100 mm, 3.5 μm) at 30 ℃. The gradient elution was performed with 0.4% methanol(A)-formic acid water(B) as the mobile phase at a flow rate of 0.8 mL·min~(-1), and the multiple-reaction monitoring(MRM) mode was adopted. According to the content of 41 constituents, hierarchical cluster analysis(HCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and gray relational analysis(GRA) were perfomed to comprehensively evaluate the samples from different habitats. The results showed that the 41 constituents exhibited good linear relationship within the tested concentration ranges, with the correlation coefficients(r) greater than 0.999 4. The method featured good precision, repeatability, and stability with the relative standard deviations(RSDs) less than 5.0%. The average recoveries of the 41 constituents ranged from 98.06% to 101.9%, with the RSDs of 0.62%-4.6%. HCA and OPLS-DA separated 48 batches of Lysimachiae Herba samples from different habitats into three categories: the producing areas in Sichuan and Chongqing, the producing areas in Jiangsu, Zhejiang, and Jiangxi, and the producing areas in Guizhou. The content of 41 constituents varied among the Lysimachiae Herba samples from different habitats. The GRA results revealed that the Lysimachiae Herba sample from Nanchong City, Sichuan Province had the best comprehensive quality. The method developed in this study was accurate and reliable and thus can be used for comprehensive evaluation of Lysimachiae Herba quality and provide basic information for the selection of habitats.
Tandem Mass Spectrometry/methods*
;
Multivariate Analysis
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Amino Acids/analysis*
10.Quality evaluation of Compound Cheqian Tablets based on UPLC-Q-TOF-MS/MS, network pharmacology and "double external standards" QAMS.
Kang WANG ; Pei LIU ; Si-Fan WANG ; Jie-Yu ZHANG ; Zhi-Zhi HU ; Yu-Qi MEI ; Ying-Bo YANG ; Zheng-Tao WANG ; Li YANG
China Journal of Chinese Materia Medica 2023;48(17):4675-4685
The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.
Humans
;
Tandem Mass Spectrometry
;
Berberine/pharmacology*
;
Chromatography, High Pressure Liquid/methods*
;
Network Pharmacology
;
Diabetic Nephropathies
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Tablets

Result Analysis
Print
Save
E-mail