1.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
2.Powered Tool for the Removal of a Well-Fixed Acetabular Cup: A Comparative Experimental Study
Jun Young CHUNG ; Yonghan CHA ; Chang-Ho JUNG ; Jin-Woo KIM ; Jun-Il YOO ; Jung-Taek KIM ; Yongho JEON
Clinics in Orthopedic Surgery 2025;17(3):372-380
Background:
The removal of a well-fixed acetabular cup is a challenging, labor-intensive, and time-consuming step during revision hip arthroplasty. Although the advent of the manual osteotome, Explant, has simplified the procedure, it is still a stressful process as it dissipates the surgeon’s strength and time and risks an iatrogenic pelvic fracture. Recently, EZX, a powered tool for extraction of well-fixed acetabular cups with semicircular blade was invented. This study aimed to compare Explant and EZX in an experimental condition for their efficacy and safety.
Methods:
Cementless acetabular cups were press-fitted to 20 hemipelvic polyurethane models using foam adhesives. Ten cups were removed with each tool for comparison of the elapsed time, loads on the entire hemipelvis, periacetabular strain and temperature, volume of periacetabular bone removed, and diameter of the remaining acetabular rim. Strains and loads were quantitatively assessed using strain gauges and load cells for precise and reliable measurements.
Results:
The mean duration required to remove a well-fixed cup with EZX was 38.5 seconds (range, 25–55), whereas that with Explant was 543.7 seconds (range, 214–1,051) (p < 0.001). The load on the entire hemipelvis with EZX (mean, 9.1 kgf; range, 6.4–11.3) was 33% lower than that with Explant (mean, 13.6 kgf; range, 9.2–17.1) (p < 0.001). The periacetabular peak strains at the 3 positions with EZX were significantly lower than those with Explant (p < 0.001). The temperature during the removal did not differ significantly between the 2 tools. Although the mean volume of bone loss with Explant was 2.4 mL more than that with EZX (p < 0.001), the mean diameters of the remaining acetabular rim were not significantly different, measuring 54.1 mm with both tools.
Conclusions
The present experiment revealed that a well-fixed cup could be removed using a powered tool with less strength and time and less load on the entire pelvis. Although the powered tool removed a larger volume of bone, the diameters of the remaining acetabular rims were equivalent. This tool may help surgeons remove well-fixed cups in a short time and reduce the deforming load on the bone around the cup without increasing the size of the subsequent reconstruction cup.
3.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
4.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
5.Powered Tool for the Removal of a Well-Fixed Acetabular Cup: A Comparative Experimental Study
Jun Young CHUNG ; Yonghan CHA ; Chang-Ho JUNG ; Jin-Woo KIM ; Jun-Il YOO ; Jung-Taek KIM ; Yongho JEON
Clinics in Orthopedic Surgery 2025;17(3):372-380
Background:
The removal of a well-fixed acetabular cup is a challenging, labor-intensive, and time-consuming step during revision hip arthroplasty. Although the advent of the manual osteotome, Explant, has simplified the procedure, it is still a stressful process as it dissipates the surgeon’s strength and time and risks an iatrogenic pelvic fracture. Recently, EZX, a powered tool for extraction of well-fixed acetabular cups with semicircular blade was invented. This study aimed to compare Explant and EZX in an experimental condition for their efficacy and safety.
Methods:
Cementless acetabular cups were press-fitted to 20 hemipelvic polyurethane models using foam adhesives. Ten cups were removed with each tool for comparison of the elapsed time, loads on the entire hemipelvis, periacetabular strain and temperature, volume of periacetabular bone removed, and diameter of the remaining acetabular rim. Strains and loads were quantitatively assessed using strain gauges and load cells for precise and reliable measurements.
Results:
The mean duration required to remove a well-fixed cup with EZX was 38.5 seconds (range, 25–55), whereas that with Explant was 543.7 seconds (range, 214–1,051) (p < 0.001). The load on the entire hemipelvis with EZX (mean, 9.1 kgf; range, 6.4–11.3) was 33% lower than that with Explant (mean, 13.6 kgf; range, 9.2–17.1) (p < 0.001). The periacetabular peak strains at the 3 positions with EZX were significantly lower than those with Explant (p < 0.001). The temperature during the removal did not differ significantly between the 2 tools. Although the mean volume of bone loss with Explant was 2.4 mL more than that with EZX (p < 0.001), the mean diameters of the remaining acetabular rim were not significantly different, measuring 54.1 mm with both tools.
Conclusions
The present experiment revealed that a well-fixed cup could be removed using a powered tool with less strength and time and less load on the entire pelvis. Although the powered tool removed a larger volume of bone, the diameters of the remaining acetabular rims were equivalent. This tool may help surgeons remove well-fixed cups in a short time and reduce the deforming load on the bone around the cup without increasing the size of the subsequent reconstruction cup.
6.Powered Tool for the Removal of a Well-Fixed Acetabular Cup: A Comparative Experimental Study
Jun Young CHUNG ; Yonghan CHA ; Chang-Ho JUNG ; Jin-Woo KIM ; Jun-Il YOO ; Jung-Taek KIM ; Yongho JEON
Clinics in Orthopedic Surgery 2025;17(3):372-380
Background:
The removal of a well-fixed acetabular cup is a challenging, labor-intensive, and time-consuming step during revision hip arthroplasty. Although the advent of the manual osteotome, Explant, has simplified the procedure, it is still a stressful process as it dissipates the surgeon’s strength and time and risks an iatrogenic pelvic fracture. Recently, EZX, a powered tool for extraction of well-fixed acetabular cups with semicircular blade was invented. This study aimed to compare Explant and EZX in an experimental condition for their efficacy and safety.
Methods:
Cementless acetabular cups were press-fitted to 20 hemipelvic polyurethane models using foam adhesives. Ten cups were removed with each tool for comparison of the elapsed time, loads on the entire hemipelvis, periacetabular strain and temperature, volume of periacetabular bone removed, and diameter of the remaining acetabular rim. Strains and loads were quantitatively assessed using strain gauges and load cells for precise and reliable measurements.
Results:
The mean duration required to remove a well-fixed cup with EZX was 38.5 seconds (range, 25–55), whereas that with Explant was 543.7 seconds (range, 214–1,051) (p < 0.001). The load on the entire hemipelvis with EZX (mean, 9.1 kgf; range, 6.4–11.3) was 33% lower than that with Explant (mean, 13.6 kgf; range, 9.2–17.1) (p < 0.001). The periacetabular peak strains at the 3 positions with EZX were significantly lower than those with Explant (p < 0.001). The temperature during the removal did not differ significantly between the 2 tools. Although the mean volume of bone loss with Explant was 2.4 mL more than that with EZX (p < 0.001), the mean diameters of the remaining acetabular rim were not significantly different, measuring 54.1 mm with both tools.
Conclusions
The present experiment revealed that a well-fixed cup could be removed using a powered tool with less strength and time and less load on the entire pelvis. Although the powered tool removed a larger volume of bone, the diameters of the remaining acetabular rims were equivalent. This tool may help surgeons remove well-fixed cups in a short time and reduce the deforming load on the bone around the cup without increasing the size of the subsequent reconstruction cup.
7.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
8.Powered Tool for the Removal of a Well-Fixed Acetabular Cup: A Comparative Experimental Study
Jun Young CHUNG ; Yonghan CHA ; Chang-Ho JUNG ; Jin-Woo KIM ; Jun-Il YOO ; Jung-Taek KIM ; Yongho JEON
Clinics in Orthopedic Surgery 2025;17(3):372-380
Background:
The removal of a well-fixed acetabular cup is a challenging, labor-intensive, and time-consuming step during revision hip arthroplasty. Although the advent of the manual osteotome, Explant, has simplified the procedure, it is still a stressful process as it dissipates the surgeon’s strength and time and risks an iatrogenic pelvic fracture. Recently, EZX, a powered tool for extraction of well-fixed acetabular cups with semicircular blade was invented. This study aimed to compare Explant and EZX in an experimental condition for their efficacy and safety.
Methods:
Cementless acetabular cups were press-fitted to 20 hemipelvic polyurethane models using foam adhesives. Ten cups were removed with each tool for comparison of the elapsed time, loads on the entire hemipelvis, periacetabular strain and temperature, volume of periacetabular bone removed, and diameter of the remaining acetabular rim. Strains and loads were quantitatively assessed using strain gauges and load cells for precise and reliable measurements.
Results:
The mean duration required to remove a well-fixed cup with EZX was 38.5 seconds (range, 25–55), whereas that with Explant was 543.7 seconds (range, 214–1,051) (p < 0.001). The load on the entire hemipelvis with EZX (mean, 9.1 kgf; range, 6.4–11.3) was 33% lower than that with Explant (mean, 13.6 kgf; range, 9.2–17.1) (p < 0.001). The periacetabular peak strains at the 3 positions with EZX were significantly lower than those with Explant (p < 0.001). The temperature during the removal did not differ significantly between the 2 tools. Although the mean volume of bone loss with Explant was 2.4 mL more than that with EZX (p < 0.001), the mean diameters of the remaining acetabular rim were not significantly different, measuring 54.1 mm with both tools.
Conclusions
The present experiment revealed that a well-fixed cup could be removed using a powered tool with less strength and time and less load on the entire pelvis. Although the powered tool removed a larger volume of bone, the diameters of the remaining acetabular rims were equivalent. This tool may help surgeons remove well-fixed cups in a short time and reduce the deforming load on the bone around the cup without increasing the size of the subsequent reconstruction cup.
9.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
10.Imaging findings of intrahepatic cholangiocarcinoma for prognosis prediction and treatment decisionmaking: a narrative review
Jun Gu KANG ; Taek CHUNG ; Dong Kyu KIM ; Hyungjin RHEE
The Ewha Medical Journal 2024;47(4):e66-
Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous bile duct adenocarcinoma with a rising global incidence and a poor prognosis. This review aims to present a comprehensive overview of the most recent radiological research on iCCA, focusing on its histopathologic subclassification and the use of imaging findings to predict prognosis and inform treatment decisions. Histologically, iCCA is subclassified into small duct (SD-iCCA) and large duct (LD-iCCA) types. SD-iCCA typically arises in the peripheral small bile ducts and is often associated with chronic hepatitis or cirrhosis. It presents as a mass-forming lesion with a relatively favorable prognosis. LD-iCCA originates near the hepatic hilum, is linked to chronic bile duct diseases, and exhibits more aggressive behavior and poorer outcomes.Imaging is essential for differentiating these subtypes and assessing prognostic factors like tumor size, multiplicity, vascular invasion, lymph node metastasis, enhancement patterns, and intratumoral fibrosis. Imaging-based prognostic models have demonstrated predictive accuracy comparable to traditional pathological staging systems. Furthermore, imaging findings are instrumental in guiding treatment decisions, including those regarding surgical planning, lymphadenectomy, neoadjuvant therapy, and the selection of targeted therapies based on molecular profiling. Advancements in radiological research have improved our understanding of iCCA heterogeneity, facilitating prognosis prediction and treatment personalization. Imaging findings assist in subclassifying iCCA, predicting outcomes, and informing treatment decisions, thus optimizing patient management. Incorporating imaging-based approaches into clinical practice is crucial for advancing personalized medicine in the treatment of iCCA. However, further high-level evidence from international multicenter prospective studies is required to validate these findings and increase their clinical applicability.

Result Analysis
Print
Save
E-mail