1.Effect of Combined Treatment of Metoclopramide With Platinum-Based Drugs on Apoptosis in AMC-HN4 Cells
Jong Won PARK ; Seon Min WOO ; Jong In JEONG ; Jae Man LEE ; Ji Won LEE ; Dong Eun KIM ; Taeg Kyu KWON
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):113-120
Background and Objectives:
Metoclopramide is an antagonist of dopamine D2 receptor and is capable of alleviating chemotherapy-induced nausea and vomiting. However, its underlying mechanisms and function in improving the efficiency of chemotherapy are not fully understood. In this study, we investigated the sensitizing effect of metoclopramide on the platinum-based drugs-mediated apoptosis in human head and neck cancer cells.Subjects and Method Apoptosis was analyzed using a cell-based cytometer. The protein expression and messenger ribonucleic acid (mRNA) levels were assessed by Western blotting and real-time polymerase chain reaction, respectively.
Results:
Metoclopramide sensitized the platinum-based drug (cisplatin and oxaliplatin)-mediated apoptosis in AMC-HN4 cells, but not in normal cells. Mechanistically, we found that metoclopramide decreased Mcl-1 protein expression through post-translational regulation. Moreover, the overexpression of Mcl-1 prevented apoptosis by combined treatment of metoclopramide and platinum-based drugs.
Conclusion
Metoclopramide induced proteasome-mediated Mcl-1 downregulation, resulting in increased sensitivity to platinum-based drugs.
2.Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells
Min Yeong KIM ; Hee-Jae CHA ; Su Hyun HONG ; Sung-Kwon MOON ; Taeg Kyu KWON ; Young-Chae CHANG ; Gi Young KIM ; Jin Won HYUN ; A-Young NAM ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):470-482
Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.
3.Effect of Combined Treatment of Metoclopramide With Platinum-Based Drugs on Apoptosis in AMC-HN4 Cells
Jong Won PARK ; Seon Min WOO ; Jong In JEONG ; Jae Man LEE ; Ji Won LEE ; Dong Eun KIM ; Taeg Kyu KWON
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):113-120
Background and Objectives:
Metoclopramide is an antagonist of dopamine D2 receptor and is capable of alleviating chemotherapy-induced nausea and vomiting. However, its underlying mechanisms and function in improving the efficiency of chemotherapy are not fully understood. In this study, we investigated the sensitizing effect of metoclopramide on the platinum-based drugs-mediated apoptosis in human head and neck cancer cells.Subjects and Method Apoptosis was analyzed using a cell-based cytometer. The protein expression and messenger ribonucleic acid (mRNA) levels were assessed by Western blotting and real-time polymerase chain reaction, respectively.
Results:
Metoclopramide sensitized the platinum-based drug (cisplatin and oxaliplatin)-mediated apoptosis in AMC-HN4 cells, but not in normal cells. Mechanistically, we found that metoclopramide decreased Mcl-1 protein expression through post-translational regulation. Moreover, the overexpression of Mcl-1 prevented apoptosis by combined treatment of metoclopramide and platinum-based drugs.
Conclusion
Metoclopramide induced proteasome-mediated Mcl-1 downregulation, resulting in increased sensitivity to platinum-based drugs.
4.Effect of Combined Treatment of Metoclopramide With Platinum-Based Drugs on Apoptosis in AMC-HN4 Cells
Jong Won PARK ; Seon Min WOO ; Jong In JEONG ; Jae Man LEE ; Ji Won LEE ; Dong Eun KIM ; Taeg Kyu KWON
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):113-120
Background and Objectives:
Metoclopramide is an antagonist of dopamine D2 receptor and is capable of alleviating chemotherapy-induced nausea and vomiting. However, its underlying mechanisms and function in improving the efficiency of chemotherapy are not fully understood. In this study, we investigated the sensitizing effect of metoclopramide on the platinum-based drugs-mediated apoptosis in human head and neck cancer cells.Subjects and Method Apoptosis was analyzed using a cell-based cytometer. The protein expression and messenger ribonucleic acid (mRNA) levels were assessed by Western blotting and real-time polymerase chain reaction, respectively.
Results:
Metoclopramide sensitized the platinum-based drug (cisplatin and oxaliplatin)-mediated apoptosis in AMC-HN4 cells, but not in normal cells. Mechanistically, we found that metoclopramide decreased Mcl-1 protein expression through post-translational regulation. Moreover, the overexpression of Mcl-1 prevented apoptosis by combined treatment of metoclopramide and platinum-based drugs.
Conclusion
Metoclopramide induced proteasome-mediated Mcl-1 downregulation, resulting in increased sensitivity to platinum-based drugs.
5.Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells
Min Yeong KIM ; Hee-Jae CHA ; Su Hyun HONG ; Sung-Kwon MOON ; Taeg Kyu KWON ; Young-Chae CHANG ; Gi Young KIM ; Jin Won HYUN ; A-Young NAM ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):470-482
Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.
6.Effect of Combined Treatment of Metoclopramide With Platinum-Based Drugs on Apoptosis in AMC-HN4 Cells
Jong Won PARK ; Seon Min WOO ; Jong In JEONG ; Jae Man LEE ; Ji Won LEE ; Dong Eun KIM ; Taeg Kyu KWON
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):113-120
Background and Objectives:
Metoclopramide is an antagonist of dopamine D2 receptor and is capable of alleviating chemotherapy-induced nausea and vomiting. However, its underlying mechanisms and function in improving the efficiency of chemotherapy are not fully understood. In this study, we investigated the sensitizing effect of metoclopramide on the platinum-based drugs-mediated apoptosis in human head and neck cancer cells.Subjects and Method Apoptosis was analyzed using a cell-based cytometer. The protein expression and messenger ribonucleic acid (mRNA) levels were assessed by Western blotting and real-time polymerase chain reaction, respectively.
Results:
Metoclopramide sensitized the platinum-based drug (cisplatin and oxaliplatin)-mediated apoptosis in AMC-HN4 cells, but not in normal cells. Mechanistically, we found that metoclopramide decreased Mcl-1 protein expression through post-translational regulation. Moreover, the overexpression of Mcl-1 prevented apoptosis by combined treatment of metoclopramide and platinum-based drugs.
Conclusion
Metoclopramide induced proteasome-mediated Mcl-1 downregulation, resulting in increased sensitivity to platinum-based drugs.
7.Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells
Min Yeong KIM ; Hee-Jae CHA ; Su Hyun HONG ; Sung-Kwon MOON ; Taeg Kyu KWON ; Young-Chae CHANG ; Gi Young KIM ; Jin Won HYUN ; A-Young NAM ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):470-482
Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.
8.Effect of Combined Treatment of Metoclopramide With Platinum-Based Drugs on Apoptosis in AMC-HN4 Cells
Jong Won PARK ; Seon Min WOO ; Jong In JEONG ; Jae Man LEE ; Ji Won LEE ; Dong Eun KIM ; Taeg Kyu KWON
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):113-120
Background and Objectives:
Metoclopramide is an antagonist of dopamine D2 receptor and is capable of alleviating chemotherapy-induced nausea and vomiting. However, its underlying mechanisms and function in improving the efficiency of chemotherapy are not fully understood. In this study, we investigated the sensitizing effect of metoclopramide on the platinum-based drugs-mediated apoptosis in human head and neck cancer cells.Subjects and Method Apoptosis was analyzed using a cell-based cytometer. The protein expression and messenger ribonucleic acid (mRNA) levels were assessed by Western blotting and real-time polymerase chain reaction, respectively.
Results:
Metoclopramide sensitized the platinum-based drug (cisplatin and oxaliplatin)-mediated apoptosis in AMC-HN4 cells, but not in normal cells. Mechanistically, we found that metoclopramide decreased Mcl-1 protein expression through post-translational regulation. Moreover, the overexpression of Mcl-1 prevented apoptosis by combined treatment of metoclopramide and platinum-based drugs.
Conclusion
Metoclopramide induced proteasome-mediated Mcl-1 downregulation, resulting in increased sensitivity to platinum-based drugs.
9.High Sodium Intake, as Assessed by Urinary Sodium Excretion, Is Associated with Nonalcoholic Fatty Liver Disease or Sarcopenia
Eugene HAN ; Mi Kyung KIM ; Seung-Soon IM ; Hye Soon KIM ; Taeg Kyu KWON ; Byoung Kuk JANG
Gut and Liver 2023;17(3):456-465
Background/Aims:
We explored whether high sodium intake, assessed by urinary excretion, determines the risk of sarcopenia and nonalcoholic fatty liver disease (NAFLD).
Methods:
We analyzed 10,036 adult participants with normal kidney function from the Korea National Health and Nutrition Examination Survey (2008–2011). NAFLD was identified using the fatty liver index, and the muscle mass was evaluated using dual X-ray absorptiometry. The dietary sodium intake was estimated using Tanaka’s equation.
Results:
The mean 24-hour urinary sodium excretion was 144.2±36.1 mmol/day (corresponding to 3.3 g/day Na) in the total population. The 24-hour urinary sodium excretion showed moderate accuracy in predicting NAFLD (area under the receiver operating characteristic, 0.702; 95% confidence interval [CI], 0.692 to 0.712). A cutoff value of 99.96 mmol/day (corresponding to 2.30 g/day Na) for urinary sodium excretion in predicting NAFLD showed 76.1% sensitivity and 56.1% specificity. The results of multiple adjusted models indicated that the participants with the highest urinary sodium excretion had a significantly higher risk of NAFLD (odds ratio, 1.46; 95% CI, 1.27 to 1.66; p<0.001) and sarcopenia (odds ratio, 1.49; 95% CI, 1.28 to 1.73; p<0.001) than those with the lowest urinary sodium excretion. The association between a higher 24-hour urinary sodium excretion and NAFLD was independent of sarcopenia.
Conclusions
Participants with a high sodium intake, as assessed by sodium excretion, had a substantial risk of NAFLD and sarcopenia
10.The Histone Lysine-specific Demethylase 1 Inhibitor, SP2509 Exerts Cytotoxic Effects against Renal Cancer Cells through Downregulation of Bcl-2 and Mcl-1
Kaixin WU ; Seon Min WOO ; Taeg Kyu KWON
Journal of Cancer Prevention 2020;25(2):79-86
Lysine-specific histone demethylase 1 (LSD1), also known as KDM1A, can remove the methyl group from lysine 4 and 9 at histone H3, which regulates transcriptional suppression and activation. Recently, high expression of LSD1 in tumors has been shown to be involved in cancer cell proliferation, metastasis, and poor prognosis. We found that SP2509, a potent and reversible inhibitor of LSD1, induced apoptosis in human renal carcinoma (Caki and ACHN) and glioma (U87MG) cells. Pharmacological inhibition and siRNA-mediated silencing of LSD1 expression effectively downregulated anti-apoptotic proteins such as Bcl-2 and Mcl-1. Ectopic expression of these proteins markedly attenuated SP2509-induced apoptosis. At a mechanistic level, we found that inhibition of LSD1 downregulated Bcl-2 at a transcriptional level. Interestingly, protein expression of Mcl-1 was modulated at a post-translation level. Our results reveal that LSD1 could induce apoptotic cell death in renal carcinoma cells through downregulation of Bcl-2 and Mcl-1.

Result Analysis
Print
Save
E-mail