1.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
2.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
3.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
4.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
5.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
6.Serratus Anterior Plane Block: A Better Modality of Pain Control after Pectus Excavatum Repair
Eun Seok KA ; Gong Min RIM ; Seungyoun KANG ; Saemi BAE ; Il-Tae JANG ; Hyung Joo PARK
Journal of Chest Surgery 2024;57(3):291-299
Background:
Postoperative pain management following minimally invasive repair of pectus excavatum (MIRPE) remains a critical concern due to severe post-procedural pain.Promising results have been reported for cryoanalgesia following MIRPE; however, its invasiveness, single-lung ventilation, and additional instrumentation requirements remain obstacles. Serratus anterior plane block (SAPB) is a regional block technique capable of covering the anterior chest wall at the T2–9 levels, which are affected by MIRPE. We hypothesized that SAPB would be a superior alternative pain control modality that reduces postoperative pain more effectively than conventional methods.
Methods:
We conducted a retrospective study of patients who underwent MIRPE between March 2022 and August 2023. The efficacy of pain control was compared between group N (conventional pain management, n=24) and group S (SAPB, n=26). Group N received intravenous patient-controlled analgesia (IV-PCA) and subcutaneous local anesthetic infusion. Group S received bilateral continuous SAPB with 0.3% ropivacaine after a bilateral bolus injection of 30 mL of 0.25% ropivacaine with baseline IV-PCA. Pain levels were evaluated using a Visual Analog Scale (VAS) at 1, 3, 6, 12, 24, 48, and 72 hours postoperatively and total intravenous rescue analgesic consumption by morphine milligram equivalents (MME).
Results:
Mean VAS scores were significantly lower in group S than in group N throughout the 72-hour postoperative period (p<0.01). Group S showed significantly lower MME at postoperative 72 hours (group N: 108.53, group S: 16.61; p<0.01).
Conclusion
SAPB improved immediate postoperative pain control in both the resting and dynamic states and reduced opioid consumption compared to conventional management.
7.Effect of prophylactic abdominal drainage on postoperative pain in laparoscopic hemicolectomy for colon cancer: a single-center observational study in Korea
Sung Seo HWANG ; Heung-Kwon OH ; Hye-Rim SHIN ; Tae-Gyun LEE ; Mi Jeong CHOI ; Min Hyeong JO ; Hong-min AHN ; Hyeonjeong PARK ; Hyun Hee SIM ; Eunjeong JI ; Anuj Naresh SINGHI ; Duck-Woo KIM ; Sung-Bum KANG
Journal of Minimally Invasive Surgery 2024;27(2):76-84
Purpose:
This study aimed to evaluate the effect of prophylactic abdominal drainage (AD) in laparoscopic hemicolectomy, focusing on assessing postoperative pain outcomes.
Methods:
Patients were categorized into two groups: those with and without AD (AD group vs.no-AD group). A numerical rating scale (NRS) was used to assess postoperative pain on each postoperative day (POD). Further, the inverse probability of treatment weighting (IPTW) method was used to reduce intergroup bias.
Results:
In total, 204 patients who underwent laparoscopic hemicolectomies by a single surgeon between June 2013 and September 2022 at a single institution were retrospectively reviewed. After adjusting for IPTW, NRS scores on POD 2 were significantly lower in the no-AD group (3.2 ± 0.8 vs. 3.4 ± 0.8, p = 0.043). Further examination of postoperative outcomes showed no statistically significant differences in complications between the AD (17.3%) and no-AD (12.4%) groups (p = 0.170). The postoperative length of hospital stay was 7.3 ± 2.8 days in the AD group and 6.9 ± 3.0 days in the no-AD group, with no significant difference (p = 0.298). Time to first flatus was 3.0 ± 0.9 days in the AD group and 2.7 ± 0.9 days in the no-AD group, with no significant difference (p = 0.078). Regarding readmission within 1 month, there were four cases each in the AD (2.3%) and no-AD (1.7%) groups, with no significant difference (p = 0.733).
Conclusion
Laparoscopic hemicolectomy without AD resulted in no significant differences in postoperative clinical outcomes, except for postoperative pain. This finding suggests that prophylactic AD may exacerbate postoperative pain.
8. Dieckol isolated from Eisenia bicyclis extract suppresses RANKL-induced osteoclastogenesis in murine RAW 264.7 cells
Su-Hyeon CHO ; Hoibin JEONG ; Jin KIM ; Song-Rae KIM ; Myeong Seon JEONG ; Seonju PARK ; Miri CHOI ; Kil-Nam KIM ; Su-Hyeon CHO ; Juhee AHN ; Tae-Hyung KWON ; Jung-Hee WOO ; Kil-Nam KIM
Asian Pacific Journal of Tropical Biomedicine 2022;12(6):262-269
Objective: To demonstrate the effect of dieckol from Eisenia bicyclis on osteoclastogenesis using RAW 264.7 cells. Methods: Murine macrophage RAW 264.7 cells were subjected to dieckol treatment, followed by treatment with receptor activator of nuclear factor kappa-B ligand (RANKL) to induce osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) activity was examined using a TRAP activity kit. Western blotting analysis was conducted to examine the level of osteoclast- related factors, including TRAP and calcitonin receptor (CTR), transcriptional factors, including c-Fos, c-Jun, and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), nuclear factor kappa-B (NF-κB), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Immunofluorescence staining was conducted to examine the expression of c-Fos, c-Jun, and NFATc1. Results: Among the four phlorotannin compounds present in Eisenia bicyclis, dieckol significantly hindered osteoclast differentiation and expression of RANKL-induced TRAP and CTR. In addition, dieckol downregulated the expression levels of c-Fos, c-Jun, NFATc1, ERK, and JNK, and suppressed NF-κB signaling. Conclusions: Dieckol can suppress RANKL-induced osteoclastogenesis. Therefore, it has therapeutic potential in treating osteoclastogenesis- associated diseases.
9.Impact of Surface and Deep Acting Emotional Labor on Emotional Dissonance among Ambulatory Care Nurses
Korean Journal of Health Promotion 2020;20(3):108-115
Background:
Ambulatory care represents the first point of contact between the patient and the hospital.Kindness is strongly emphasized for ambulatory care nurses in customer-centered medical services. The purpose of this study was to investigate the relationship among surface acting, deep acting, and emotional dissonance of emotional labor and to identify the influencing factors on emotional dissonance of ambulatory care nurses in a tertiary hospital.
Methods:
This study is a correlational study. The data was collected using emotional labor scales from 163 nurses in March 2017.
Results:
The surface acting, deep acting of emotional labor, and emotional dissonance were 3.71±0.69, 3.76±0.57, and 3.36±0.90 respectively in the ambulatory care nurses. The result of the multiple regressions indicates that surface (β=0.77,P<0.001) and deep acting (β=0.12, P=0.009) of emotional labor predict 67.6% (F=188.99,P<0.001) in emotional dissonance of ambulatory care nurses.
Conclusions
To improve emotional dissonance for ambulatory care nurses, it is necessary to develop and utilize emotional labor management program and effective emotional labor management.
10.A Case of Superficial Basal Cell Carcinoma Not Correctly Diagnosed with Punch Biopsy but Diagnosed with Dermoscopy
Tae Jun PARK ; Ko Eun KIM ; Jae Young JEONG ; Hwa Jung RYU ; Sang Wook SON ; Il-Hwan KIM ; Hye Rim MOON
Korean Journal of Dermatology 2020;58(6):419-422
Basal cell carcinoma is a common cancer and has been reported to account for approximately 80% of non-melanoma skin cancers. Superficial basal cell carcinoma occurs mainly in the trunk or limbs and is characterized by clinical features of scaly erythema with or without epidermal atrophy. These clinical features require differentiation from those of other benign and malignant skin diseases. Recently, specific dermoscopic findings of basal cell carcinoma have been helpful for diagnosis. Common dermoscopic findings of superficial basal cell carcinoma include superficial telangiectasia and maple leaf-like areas. Herein, we report a case of superficial basal cell carcinoma that was not diagnosed by punch biopsy but by dermoscopy.

Result Analysis
Print
Save
E-mail