1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Korean Registry on the Current Management of Helicobacter pylori (K-Hp-Reg): Interim Analysis of Adherence to the Revised Evidence-Based Guidelines for First-Line Treatment
Hyo-Joon YANG ; Joon Sung KIM ; Ji Yong AHN ; Ok-Jae LEE ; Gwang Ha KIM ; Chang Seok BANG ; Moo In PARK ; Jae Yong PARK ; Sun Moon KIM ; Su Jin HONG ; Joon Hyun CHO ; Shin Hee KIM ; Hyun Joo SONG ; Jin Woong CHO ; Sam Ryong JEE ; Hyun LIM ; Yong Hwan KWON ; Ju Yup LEE ; Seong Woo JEON ; Seon-Young PARK ; Younghee CHOE ; Moon Kyung JOO ; Dae-Hyun KIM ; Jae Myung PARK ; Beom Jin KIM ; Jong Yeul LEE ; Tae Hoon OH ; Jae Gyu KIM ;
Gut and Liver 2025;19(3):364-375
Background/Aims:
The Korean guidelines for Helicobacter pylori treatment were revised in 2020, however, the extent of adherence to these guidelines in clinical practice remains unclear. Herein, we initiated a prospective, nationwide, multicenter registry study in 2021 to evaluate the current management of H.pylori infection in Korea.
Methods:
This interim report describes the adherence to the revised guidelines and their impact on firstline eradication rates. Data on patient demographics, diagnoses, treatments, and eradication outcomes were collected using a web-based electronic case report form.
Results:
A total of 7,261 patients from 66 hospitals who received first-line treatment were analyzed.The modified intention-to-treat eradication rate for first-line treatment was 81.0%, with 80.4% of the prescriptions adhering to the revised guidelines. The most commonly prescribed regimen was the 14-day clarithromycin-based triple therapy (CTT; 42.0%), followed by tailored therapy (TT; 21.2%), 7-day CTT (14.1%), and 10-day concomitant therapy (CT; 10.1%). Time-trend analysis demonstrated significant increases in guideline adherence and the use of 10-day CT and TT, along with a decrease in the use of 7-day CTT (all p<0.001). Multivariate logistic regression analysis revealed that guideline adherence was significantly associated with first-line eradication success (odds ratio, 2.03; 95% confidence interval, 1.61 to 2.56; p<0.001).
Conclusions
The revised guidelines for the treatment of H. pylori infection have been increasingly adopted in routine clinical practice in Korea, which may have contributed to improved first-line eradication rates. Notably, the 14-day CTT, 10-day CT, and TT regimens are emerging as the preferred first-line treatment options among Korean physicians.
4.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.
5.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
9.The impact of the laboratory quality management program on colorectal cancer screening using immunochemical fecal occult blood tests in Korea
Hye Ryun LEE ; Sollip KIM ; Hyeongsu KIM ; Yeo-Min YUN ; Ho Jin JEONG ; Minje HAN ; Myeong Hee KIM ; Tae-Hyun UM ; You Kyoung LEE ; Byung Ryul JEON ; Kunsei LEE ; Sail CHUN
Journal of the Korean Medical Association 2025;68(5):338-347
Purpose:
Immunochemical fecal occult blood tests (iFOBT) have been utilized as the primary method for colorectal cancer screening within Korea's National Cancer Screening Program. This study aimed to evaluate the impact of the accreditation program for clinical laboratories and external quality assessment (EQA) programs on colorectal cancer screening.
Methods:
We analyzed the false-positive rates of iFOBT in colorectal cancer screening from 2016 to 2020 according to participation and performance in the Outstanding Laboratory Accreditation Program (OLAP) conducted by the Laboratory Medicine Foundation, and the External Quality Assessment programs run by the Korean Association of External Quality Assessment Service.
Results:
False-positive rates of iFOBT were lower among institutions accredited by OLAP (2.35%) compared with non-accredited (3.04%) and non-participating institutions (5.60%). Similarly, institutions participating in the EQA program exhibited lower false-positive rates (3.79%) compared to non-participants (7.04%). Within the iFOBT-specific EQA program, institutions that passed demonstrated the lowest false-positive rate (3.37%), while failing institutions showed the highest rate (9.07%), surpassing even non-participating institutions (6.44%).
Conclusion
Participation in quality management programs such as OLAP and EQA was associated with lower false-positive rates in iFOBT for colorectal cancer screening. These findings suggest that quality management initiatives can increase the accuracy of iFOBT, potentially improving the effectiveness of colorectal cancer screening programs, and reducing unnecessary follow-up procedures and associated healthcare costs.
10.PDK4 expression and tumor aggressiveness in prostate cancer
Eun Hye LEE ; Yun-Sok HA ; Bo Hyun YOON ; Minji JEON ; Dong Jin PARK ; Jiyeon KIM ; Jun-Koo KANG ; Jae-Wook CHUNG ; Bum Soo KIM ; Seock Hwan CHOI ; Hyun Tae KIM ; Tae-Hwan KIM ; Eun Sang YOO ; Tae Gyun KWON
Investigative and Clinical Urology 2025;66(3):227-235
Purpose:
Prostate cancer ranks as the second most common cancer in men globally, representing a significant cause of cancer-related mortality. Metastasis, the spread of cancer cells from the primary site to distant organs, remains a major challenge in managing prostate cancer. Pyruvate dehydrogenase kinase 4 (PDK4) is implicated in the regulation of aerobic glycolysis, emerging as a potential player in various cancers. However, its role in prostate cancer remains unclear. This study aims to analyze PDK4 expression in prostate cancer cells and human samples, and to explore the gene's clinical significance.
Materials and Methods:
PDK4 expression was detected in cell lines and human tissue samples. Migration ability was analyzed using Matrigel-coated invasion chambers. Human samples were obtained from the Kyungpook National University Chilgok Hospital.
Results:
PDK4 expression was elevated in prostate cancer cell lines compared to normal prostate cells, with particularly high levels in DU145 and LnCap cell lines. PDK4 knockdown in these cell lines suppressed their invasion ability, indicating a potential role of PDK4 in prostate cancer metastasis. Furthermore, our results revealed alterations in epithelial-mesenchymal transition markers and downstream signaling molecules following PDK4 suppression, suggesting its involvement in the modulation of invasion-related pathways. Furthermore, PDK4 expression was increased in prostate cancer tissues, especially in castration-resistant prostate cancer, compared to normal prostate tissues, with PSA and PDK4 expression showing a significantly positive correlation.
Conclusions
PDK4 expression in prostate cancer is associated with tumor invasion and castration status. Further validation is needed to demonstrate its effectiveness as a therapeutic target.

Result Analysis
Print
Save
E-mail