1.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
		                        		
		                        			 Purpose:
		                        			Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. 
		                        		
		                        			Materials and Methods:
		                        			This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. 
		                        		
		                        			Results:
		                        			TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making. 
		                        		
		                        			Conclusion
		                        			TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment. 
		                        		
		                        		
		                        		
		                        	
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
		                        		
		                        			 Purpose:
		                        			Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. 
		                        		
		                        			Materials and Methods:
		                        			This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. 
		                        		
		                        			Results:
		                        			TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making. 
		                        		
		                        			Conclusion
		                        			TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment. 
		                        		
		                        		
		                        		
		                        	
3.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
		                        		
		                        			 Purpose:
		                        			Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. 
		                        		
		                        			Materials and Methods:
		                        			This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. 
		                        		
		                        			Results:
		                        			TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making. 
		                        		
		                        			Conclusion
		                        			TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment. 
		                        		
		                        		
		                        		
		                        	
4.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
		                        		
		                        			
		                        			 Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction. 
		                        		
		                        		
		                        		
		                        	
5.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
		                        		
		                        			
		                        			 Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction. 
		                        		
		                        		
		                        		
		                        	
6.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
		                        		
		                        			
		                        			 Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction. 
		                        		
		                        		
		                        		
		                        	
7.Validation of CT-Based Risk Stratification System for Lymph Node Metastasis in Patients With Thyroid Cancer
Yun Hwa ROH ; Sae Rom CHUNG ; Jung Hwan BAEK ; Young Jun CHOI ; Tae-Yon SUNG ; Dong Eun SONG ; Tae Yong KIM ; Jeong Hyun LEE
Korean Journal of Radiology 2023;24(10):1028-1037
		                        		
		                        			 Objective:
		                        			To evaluate the computed tomography (CT) features for diagnosing metastatic cervical lymph nodes (LNs) in patients with differentiated thyroid cancer (DTC) and validate the CT-based risk stratification system suggested by the Korean Thyroid Imaging Reporting and Data System (K-TIRADS) guidelines. 
		                        		
		                        			Materials and Methods:
		                        			A total of 463 LNs from 399 patients with DTC who underwent preoperative CT staging and ultrasound-guided fine-needle aspiration were included. The following CT features for each LN were evaluated: absence of hilum, cystic changes, calcification, strong enhancement, and heterogeneous enhancement. Multivariable logistic regression analysis was performed to identify independent CT features associated with metastatic LNs, and their diagnostic performances were evaluated. LNs were classified into probably benign, indeterminate, and suspicious categories according to the K-TIRADS and the modified LN classification proposed in our study. The diagnostic performance of both classification systems was compared using the exact McNemar and Kosinski tests. 
		                        		
		                        			Results:
		                        			The absence of hilum (odds ratio [OR], 4.859; 95% confidence interval [CI], 1.593–14.823; P = 0.005), strong enhancement (OR, 28.755; 95% CI, 12.719–65.007; P < 0.001), and cystic changes (OR, 46.157; 95% CI, 5.07–420.234; P = 0.001) were independently associated with metastatic LNs. All LNs showing calcification were diagnosed as metastases. Heterogeneous enhancement did not show a significant independent association with metastatic LNs. Strong enhancement, calcification, and cystic changes showed moderate to high specificity (70.1%–100%) and positive predictive value (PPV) (91.8%–100%). The absence of the hilum showed high sensitivity (97.8%) but low specificity (34.0%). The modified LN classification, which excluded heterogeneous enhancement from the K-TIRADS, demonstrated higher specificity (70.1% vs. 62.9%, P = 0.016) and PPV (92.5% vs. 90.9%, P = 0.011) than the K-TIRADS. 
		                        		
		                        			Conclusion
		                        			Excluding heterogeneous enhancement as a suspicious feature resulted in a higher specificity and PPV for diagnosing metastatic LNs than the K-TIRADS. Our research results may provide a basis for revising the LN classification in future guidelines. 
		                        		
		                        		
		                        		
		                        	
8.Ischemic Burden Assessment Using Single Photon Emission Computed Tomography in Single Vessel Chronic Total Occlusion of Coronary Artery
Yong-Hoon YOON ; Sangwon HAN ; Osung KWON ; Kyusup LEE ; Ju Hyeon KIM ; Junghoon LEE ; Tae oh KIM ; Jae-Hyung ROH ; Pil Hyung LEE ; Soo-Jin KANG ; Jae-Hwan LEE ; Young-Hak KIM ; Cheol Whan LEE ; Dae Hyuk MOON ; Seung-Whan LEE
Korean Circulation Journal 2022;52(2):150-161
		                        		
		                        			 Background and Objectives:
		                        			Studies evaluating the nature of ischemic burden of chronic total occlusion (CTO) vessels are still lacking. 
		                        		
		                        			Methods:
		                        			A total of 165 patients with single vessel CTO >2.5 mm in an epicardial coronary artery who underwent single photon emission computed tomography (SPECT) were enrolled in the study. Ischemic burden was calculated with the use of semi-quantitative SPECT analysis, and was defined as the summed difference score (SDS) divided by the maximal limit of the score (=SDS/68). 
		                        		
		                        			Results:
		                        			The mean age of the participants was 59.5 years and the CTO of the left anterior descending coronary artery (LAD), left circumplex coronary artery (LCX), and right coronary artery (RCA) accounted for 93 (56.4%), 18 (10.9%), and 54 (32.7%) patients, respectively. The median ischemic burden of the total population was 8.8%, and it was highest in the LAD CTO (10.3%) compared with the LCX (5.9%) and RCA CTO (5.9%, p<0.001). High-ischemic burden (ischemic burden >10%) was observed in 66 patients (40.0%), and in 47 patients (50.5%) of the LAD CTO. Ischemic burden was different according to the CTO location only in LAD CTO. The statistically significant predictors for high-ischemic burden were hypertension, baseline ejection fraction >45%, LAD CTO, proximal CTO location, and de novo CTO. Japanese-CTO score and Rentrop scale collateral grade were not associated with high-ischemic burden. 
		                        		
		                        			Conclusions
		                        			Only 40% of patients with single vessel CTO had ischemic burden >10%. For CTO vessels, measurement of ischemic burden using SPECT prior to revascularization may be helpful in identifying beneficial subjects. 
		                        		
		                        		
		                        		
		                        	
9.2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 4. Adult advanced life support
Jaehoon OH ; Kyoung-Chul CHA ; Jong-Hwan LEE ; Seungmin PARK ; Dong-Hyeok KIM ; Byung Kook LEE ; Jung Soo PARK ; Woo Jin JUNG ; Dong Keon LEE ; Young Il ROH ; Tae Youn KIM ; Sung Phil CHUNG ; Young-Min KIM ; June Dong PARK ; Han-Suk KIM ; Mi Jin LEE ; Sang-Hoon NA ; Gyu Chong CHO ; Ai-Rhan Ellen KIM ; Sung Oh HWANG ;
Clinical and Experimental Emergency Medicine 2021;8(S):S26-S40
		                        		
		                        		
		                        		
		                        	
10.2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 4. Adult advanced life support
Jaehoon OH ; Kyoung-Chul CHA ; Jong-Hwan LEE ; Seungmin PARK ; Dong-Hyeok KIM ; Byung Kook LEE ; Jung Soo PARK ; Woo Jin JUNG ; Dong Keon LEE ; Young Il ROH ; Tae Youn KIM ; Sung Phil CHUNG ; Young-Min KIM ; June Dong PARK ; Han-Suk KIM ; Mi Jin LEE ; Sang-Hoon NA ; Gyu Chong CHO ; Ai-Rhan Ellen KIM ; Sung Oh HWANG ;
Clinical and Experimental Emergency Medicine 2021;8(S):S26-S40
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail