1.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
2.Mechanism of action of sex hormones in regulating T cell-mediated autoimmune hepatitis: A study based on the phenomenon of female bias
Haiqiang WANG ; Dasha SUN ; Han WANG ; Jiahua TIAN ; Xinyue CUI ; Ming LI
Journal of Clinical Hepatology 2025;41(4):742-747
Autoimmune hepatitis (AIH) is an autoimmune disease characterized by liver parenchymal destruction and chronic fibrosis, and it is often mediated by T cells. The pathogenesis of AIH involves multiple factors, including sex, region, environmental factors, and genetic susceptibility. A notable predisposition is observed in female individuals, and the incidence rate of AIH in female individuals is significantly higher than that in male individuals. This sex difference is associated with various factors, and sex hormones may be an important cause of the female predominance of AIH, although the specific mechanisms remain unclear. An in-depth understanding of the mechanism of action of sex hormones in the pathogenesis of AIH will help to better understand the pathogenesis of the disease and may provide important clues for developing future treatment methods and prevention strategies. This article reviews the mechanism of action of estrogen and androgen in regulating the pathogenesis of AIH by regulating T cells, in order to provide new ideas and directions for further exploring the potential role of sex hormones in the etiology of autoimmune diseases.
3.Material basis of bitter taste and taste-effect relationship in Cistanche deserticola based on UPLC-Q-Orbitrap HRMS combined with molecular docking.
Li-Ying TIAN ; Ming-Jie LI ; Qiang HOU ; Zheng-Yuan WANG ; Ai-Sai-Ti GULIZIYE ; Jun-Ping HU
China Journal of Chinese Materia Medica 2025;50(6):1569-1580
Based on ultra-performance liquid chromatography-quadrupole-electrostatic field Orbitrap high-resolution mass spectrometry(UPLC-Q-Orbitrap HRMS) technology and molecular docking, the bitter-tasting substances(hereafter referred to as "bitter substances") in Cistanche deserticola extract were investigated, and the bitter taste and efficacy relationship was explored to lay the foundation for future research on de-bittering and taste correction. Firstly, UPLC-Q-Orbitrap HRMS was used for the qualitative analysis of the constituents of C. deserticola, and 69 chemical components were identified. These chemical components were then subjected to molecular docking with the bitter taste receptor, leading to the screening of 20 bitter substances, including 6 phenylethanol glycosides, 5 flavonoids, 3 phenolic acids, 2 cycloalkenyl ether terpenes, 2 alkaloids, and 2 other components. Nine batches of fresh C. deserticola samples were collected from the same origin but harvested at different months. These samples were divided into groups based on harvest month and plant part. The bitterness was quantified using an electronic tongue, and the content of six potential bitter-active compounds(pineconotyloside, trichothecene glycoside, tubulin A, iso-trichothecene glycoside, jinshihuaoside, and jingnipinoside) was determined by high-performance liquid chromatography(HPLC). The total content of phenylethanol glycosides, polysaccharides, alkaloids, flavonoids, and phenolic acids was determined using UV-visible spectrophotometry. Chemometric analyses were then conducted, including Pearson's correlation analysis, gray correlation analysis, and orthogonal partial least squares discriminant analysis(OPLS-DA), to identify the bitter components in C. deserticola. The results were consistent with the molecular docking findings, and the two methods mutually supported each other. Finally, network pharmacological predictions and analyses were performed to explore the relationship between the targets of bitter substances and their efficacy. The results indicated that key targets of the bitter substances included EGFR, PIK3CB, and PTK2. These substances may exert their bitter effects by acting on relevant disease targets, confirming that the bitter substances in C. deserticola are the material basis of its bitter taste efficacy. In conclusion, this study suggests that the phenylethanol glycosides, primarily pineconotyloside, mauritiana glycoside, and gibberellin, are the material basis for the "bitter taste" of C. deserticola. The molecular docking technique plays a guiding role in the screening of bitter substances in traditional Chinese medicine(TCM). The bitter substances in C. deserticola not only contribute to its bitter taste but also support the concept of the "taste-efficacy" relationship in TCM, providing valuable insights and references for future research in this area.
Molecular Docking Simulation
;
Taste
;
Chromatography, High Pressure Liquid
;
Cistanche/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mass Spectrometry
4.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
5.Effects of Sishen Pills and its separated prescriptions on human intestinal flora based on in vitro fermentation model.
Jia-Yang XI ; Qi-Qi WANG ; Xue CHENG ; Hui XIA ; Lu CAO ; Yue-Hao XIE ; Tian-Xiang ZHU ; Ming-Zhu YIN
China Journal of Chinese Materia Medica 2025;50(11):3137-3146
Sishen Pills and its separated prescriptions are classic prescriptions of traditional Chinese medicine to treat intestinal diseases. In this study, a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry(HPLC-ESI-MS/MS) technology was used to identify the components of Sishen Pills, Ershen Pills, and Wuweizi Powder. The positive and negative ion sources of electrospray ionization were simultaneously collected by mass spectrometry. A total of 11 effective components were detected in Sishen Pills, with four effective components detected in Ershen Pills and eight effective components detected in Wuweizi Powder, respectively. To explore the effects of Sishen Pills and its separated prescriptions on the human intestinal flora, an in vitro anaerobic fermentation model was established, and the human intestinal flora was incubated with Sishen Pills, Ershen Pills, and Wuweizi Powder in vitro. The 16S rDNA sequencing technology was used to analyze the changes in the intestinal flora. The results showed that compared with the control group, Sishen Pills, and its separated prescriptions could decrease the intestinal flora abundance and increase the Shannon index after fermentation. The abundance of Bifidobacterium was significantly increased in the Sishen Pills and Ershen Pills groups. However, the abundance of Lactobacillus, Weissella, and Pediococcus was significantly increased in the Wuweizi Powder group. After fermentation for 12 h, the pH of the fermentation solution of three kinds of liquids with feces gradually decreased and was lower than that of the control group. The decreasing amplitude in the Wuweizi Powder group was the most obvious. The single-bacteria fermentation experiments further confirmed that Sishen Pills and Wuweizi Powder had inhibitory effects on Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, and the antibacterial activity of Wuweizi Powder was stronger than that of Sishen Pills. Both Sishen Pills and Ershen Pills could promote the growth of Lactobacillus brevis, and Ershen Pills could promote the growth of Bifidobacterium adolescentis. This study provided a more sufficient theoretical basis for the clinical application of Sishen Pills and its separated prescriptions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/chemistry*
;
Fermentation/drug effects*
;
Bacteria/drug effects*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Intestines/microbiology*
6.Buyang Huanwu Decoction promotes angiogenesis after oxygen-glucose deprivation/reoxygenation injury of bEnd.3 cells by regulating YAP1/HIF-1α signaling pathway via caveolin-1.
Bo-Wei CHEN ; Yin OUYANG ; Fan-Zuo ZENG ; Ying-Fei LIU ; Feng-Ming TIAN ; Ya-Qian XU ; Jian YI ; Bai-Yan LIU
China Journal of Chinese Materia Medica 2025;50(14):3847-3856
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the blood components of BHD. The cell counting kit-8(CCK-8) method was used to detect the optimal intervention concentration of drug-containing serum of BHD after OGD/R injury of bEnd.3. The lentiviral transfection method was used to construct a Cav1 silent stable strain, and Western blot and polymerase chain reaction(PCR) methods were used to verify the silencing efficiency. The control bEnd.3 cells were divided into a normal group(sh-NC control group), an OGD/R model + blank serum group(sh-NC OGD/R group), and an OGD/R model + drug-containing serum group(sh-NC BHD group). Cav1 silent cells were divided into an OGD/R model + blank serum group(sh-Cav1 OGD/R group) and an OGD/R model + drug-containing serum group(sh-Cav1 BHD group). The cell survival rate was detected by the CCK-8 method. The cell migration ability was detected by a cell migration assay. The lumen formation ability was detected by an angiogenesis assay. The apoptosis rate was detected by flow cytometry, and the expression of YAP1/HIF-1α signaling pathway-related proteins in each group was detected by Western blot. Finally, co-immunoprecipitation was used to verify the interaction between YAP1 and HIF-1α. The results showed astragaloside Ⅳ, formononetin, ferulic acid, and albiflorin in BHD can all enter the blood. The drug-containing serum of BHD at a mass fraction of 10% may be the optimal intervention concentration for OGD/R-induced injury of bEnd.3 cells. Compared with the sh-NC control group, the sh-NC OGD/R group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, significantly increased cell apoptotic rate, significantly lowered phosphorylation level of YAP1 at S127 site, and significantly elevated nuclear displacement level of YAP1 and protein expression of HIF-1α, vascular endothelial growth factor(VEGF), and vascular endothelial growth factor receptor 2(VEGFR2). Compared with the same type of OGD/R group, the sh-NC BHD group and sh-Cav1 BHD group had significantly increased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly decreased cell apoptotic rate, a further decreased phosphorylation level of YAP1 at S127 site, and significantly increased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC OGD/R group, the sh-Cav1 OGD/R group exhibited significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC BHD group, the sh-Cav1 BHD group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at the S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. YAP1 protein was present in the protein complex precipitated by the HIF-1α antibody, and HIF-1α protein was also present in the protein complex precipitated by the YAP1 antibody. The results confirmed that the drug-containing serum of BHD can increase the activity of YAP1/HIF-1α pathway in bEnd.3 cells damaged by OGD/R through Cav1 and promote angiogenesis in vitro.
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Signal Transduction/drug effects*
;
Glucose/metabolism*
;
Caveolin 1/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
YAP-Signaling Proteins
;
Oxygen/metabolism*
;
Endothelial Cells/metabolism*
;
Cell Line
;
Adaptor Proteins, Signal Transducing/genetics*
;
Neovascularization, Physiologic/drug effects*
;
Cell Hypoxia/drug effects*
;
Angiogenesis
7.Research progress in application characteristics of plant-derived exosome-like nanovesicles in intestinal diseases.
Yuan ZUO ; Jin-Ying ZHANG ; Sheng-Dong XU ; Shuo TIAN ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(14):3868-3877
Inflammatory bowel disease is a chronic, idiopathic, and recurrent gastrointestinal disorder with an unclear etiology and uncertain pathogenesis. Traditional treatment strategies rely on frequent administration of high doses of medication to reduce inflammation, whereas these approaches have limitations and may induce potential complications. Therefore, finding more effective and safe therapeutic drugs and methods is particularly important. Plant-derived exosome-like nanovesicles(PDELNs) are nano-sized vesicles with a lipid bilayer structure that are secreted by plant cells. The bioactive molecules contained within, such as lipids, proteins, and nucleic acids, can serve as information carriers, playing a role in the transmission of information and substances between cells and across species. PDELNs can carry and transfer their own bioactive substances or act as carriers for delivering other active components or drugs. Due to the high biocompatibility, low toxicity, and significant bioactivity, PDELNs have garnered widespread attention. Compared with other exosomes, PDELNs are not destroyed in the gastrointestinal tract when taken orally and can reach the intestines. This unique property makes PDELNs a promising oral nanodrug for treating intestinal diseases, showing great potential in this area. This article reviews recent research literature on PDELNs regarding the physicochemical characteristics, extraction and purification methods, functions, application characteristics and mechanisms in the treatment of intestinal diseases, and use as a carrier for treating intestinal diseases, aiming to provide a reference for the use of PDELNs in the treatment of intestinal diseases.
Humans
;
Exosomes/metabolism*
;
Animals
;
Intestinal Diseases/metabolism*
;
Plants/metabolism*
;
Drug Carriers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Delivery Systems
;
Nanoparticles/chemistry*
8.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.
9.Ferrum@albumin assembled nanoclusters inhibit NF-κB signaling pathway for NIR enhanced acute lung injury immunotherapy.
Xiaoxuan GUAN ; Binbin ZOU ; Weiqian JIN ; Yan LIU ; Yongfeng LAN ; Jing QIAN ; Juan LUO ; Yanjun LEI ; Xuzhi LIANG ; Shiyu ZHANG ; Yuting XIAO ; Yan LONG ; Chen QIAN ; Chaoyu HUANG ; Weili TIAN ; Jiahao HUANG ; Yongrong LAI ; Ming GAO ; Lin LIAO
Acta Pharmaceutica Sinica B 2025;15(11):5891-5907
Acute lung injury (ALI) has been a kind of acute and severe disease that is mainly characterized by systemic uncontrolled inflammatory response to the production of huge amounts of reactive oxygen species (ROS) in the lung tissue. Given the critical role of ROS in ALI, a Fe3O4 loaded bovine serum albumin (BSA) nanocluster (BF) was developed to act as a nanomedicine for the treatment of ALI. Combining with NIR irradiation, it exhibited excellent ROS scavenging capacity. Significantly, it also displayed the excellent antioxidant and anti-inflammatory functions for lipopolysaccharides (LPS) induced macrophages (RAW264.7), and Sprague Dawley rats via lowering intracellular ROS levels, reducing inflammatory factors expression levels, inducing macrophage M2 polarization, inhibiting NF-κB signaling pathway, increasing CD4+/CD8+ T cell ratios, as well as upregulating HSP70 and CD31 expression levels to reprogram redox homeostasis, reduce systemic inflammation, activate immunoregulation, and accelerate lung tissue repair, finally achieving the synergistic enhancement of ALI immunotherapy. It finally provides an effective therapeutic strategy of BF + NIR for the management of inflammation related diseases.

Result Analysis
Print
Save
E-mail