1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
3.Mitochondria: The Target of Ionizing Radiation Damage
Lian-Chen TIAN ; Ya-Yi YUAN ; Xu-Hong DANG
Progress in Biochemistry and Biophysics 2025;52(4):836-844
In recent years, due to the development of radiotherapy technology and nuclear energy, people have paid more and more attention to the various effects of ionizing radiation on organisms. Ionizing radiation can induce protein, DNA and other biological macromolecules to damage, resulting in apoptosis, senescence, cancer and a series of changes. For a long time, it has been believed that the main target of ionizing radiation damage is DNA in the nucleus. However, it has been reported in recent years that ionizing radiation has both direct and indirect effects, and the theory of ROS damage in the indirect effects believes that ionizing radiation has target uncertainty, so it is not comprehensive enough to evaluate only the DNA damage in the nucleus. It has been reported that ionizing radiation can cause damage to organelles as well as damage to cells. Mitochondria are important damaged organelles because mitochondria occupy as much as 30% of the entire cell volume in the cytoplasm, which contains DNA and related enzymes that are closely related to cellular ATP synthesis, aerobic respiration and other life activities. What is more noteworthy is that mitochondria are the only organelles in which DNA exists in the human body, which makes researchers pay attention to various damage to mitochondrial DNA caused by ionizing radiation (such as double-strand breaks, base mismatching, and fragment loss). Although these damages also occur in the nucleus, mitochondrial DNA is more severely damaged than nuclear DNA due to its lack of histone protection, so mitochondria are important targets of ionizing radiation damage in addition to the nucleus. Mitochondrial DNA is not protected by histones and has little repair ability. When exposed to ionizing radiation, common deletions occur at an increased frequency and are passed on to offspring. For large-scale mitochondrial DNA damage, mitochondria indirectly compensate for the amount of damaged DNA by increasing the number of DNA copies and maintaining the normal function of mitochondrial DNA. Mitochondria are in a state of oxidative stress after exposure to ionizing radiation, and this oxidative stress will promote the change in mitochondrial function. When mitochondria are damaged, the activity of proteins related to aerobic respiration decreases, and oxidative respiration is inhibited to a certain extent. At the same time, a large amount of active superoxide anions are continuously produced to stimulate mitochondrial oxidative stress, and the signal of such damage is transmitted to the surrounding mitochondria, resulting in a cascade of damage reaction, which further activates the signalling pathway between mitochondria and nucleus. The cell nucleus is also in a state of oxidative stress, and finally, the level of free radicals is high, causing secondary damage to the genetic material DNA of mitochondria and nucleus. In this paper, the damage effects of ionizing radiation on mitochondria are reviewed, to provide a new idea for radiation protection.
4.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
5.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
6.Subxiphoid uniportal approach using double sternum retractors versus subxiphoid and subcostal arch three-portal approach of video-assisted thoracoscopic surgery thymectomy for thymoma treatment: A retrospective cohort study
Jinlan ZHAO ; Weiyang CHEN ; Lin LIN ; Lei WANG ; Jie LI ; Lin MA ; Longqi CHEN ; Hong CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):482-487
Objective To compare the efficacy and safety of video-assisted thoracoscopic surgery (VATS) thymectomy for the treatment of thymoma through subxiphoid uniportal approach using double sternum retractors, and subxiphoid and subcostal arch approach. Methods We retrospectively analyzed the clinical data of the patients diagnosed with thymoma who underwent VATS thymectomy from June 2023 to June 2024 in West China Hospital. Patients were categorized based on the surgical approach into two groups: a subxiphoid uniportal VATS thymectomy (SUVT) group and a subxiphoid and subcostal arch VATS thymectomy (SASAT) group. Comparisons were made between the two groups regarding surgical duration, intraoperative blood loss, postoperative drainage, thymoma size and location, and postoperative pain assessed using the visual analogue scale (VAS). Results The SUVT group consisted of 20 patients, including 11 males and 9 females, with an average age of (51.5±14.3) years. The SASAT group comprised 40 patients, including 26 males and 14 females, with an average age of (50.0±13.0) years. Compared to the SASAT group, the SUVT group had significantly larger thymomas [ (5.9±2.7) cm vs. (4.2±2.1) cm, P=0.010] and a higher proportion of neoplasms located in the superior mediastinum (30.0% vs. 2.5%, P=0.007). Additionally, the VAS pain scores on postoperative days 3, 7, and 30 were significantly lower in the SUVT group compared to the SASAT group (P<0.05). There were no statistical differences between the two groups in demographic characteristics, operative time, intraoperative blood loss, duration and volume of postoperative drainage, length of postoperative hospital stay, or the VAS pain score on the first postoperative day. Conclusion SUVT using double sternum retractors significantly reduces postoperative pain and provides superior efficacy in the resection of larger thymomas or those situated in the superior mediastinum.
7.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
8.T5MHCII: deep learning-based model for MHC-II peptide binding affinity prediction
Zheng GAO ; Xiangdong GAO ; Wenbing YAO ; Hong TIAN
Journal of China Pharmaceutical University 2025;56(3):368-375
To address the current issue of low performance in predicting the binding affinity between antigenic peptides and specific MHC class II molecules, which fails to meet clinical requirements, we proposed T5MHCII, a deep learning-based prediction model for the affinity of MHC II class molecules to peptides. The model employed the knowledge previously acquired from the protein language model ProtT5 to extract the amino acid sequences via a transfer learning approach, thereby generating high-quality characterizations. This knowledge was then integrated with the robust learning abilities of deep learning to develop a novel model with enhanced predictive capabilities. The results of the five-fold cross-validation demonstrated that the model exhibited superior performance compared to NetMHCIIpan-3.2, PUFFIN, DeepMHCII, and RPEMH, with an AUC of 0.893±0.003 and a PCC of 0.780±0.006. The leave-one-out cross-validation (LOOCV) further demonstrated that the model exhibited enhanced generalization capabilities. This study proposes a novel approach to enhance the precision of peptide-MHCII prediction in the context of limited data affinity through the application of deep learning techniques.
9.Risk factors of persistent cough after pneumonectomy: A systematic review and meta-analysis
Dandan QUAN ; Jingfang HONG ; Tian ZHANG ; Congling LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):700-708
Objective To systematically evaluate the risk factors for persistent cough after lung resection, providing a theoretical basis for preventing persistent postoperative cough. Methods The Cochrane Library, Web of Science, EMbase, PubMed, Chinese Biomedical Literature Database, Wanfang, CNKI, and VIP databases were searched for studies related to risk factors for persistent cough after lung resection. The search period was from database inception to March 30, 2023. Two researchers independently screened the literature, extracted data, and performed quality assessment. RevMan 5.3 software was used for meta-analysis. Results A total of 17 articles with 3 698 patients were included. Meta-analysis results showed that females [OR=3.10, 95%CI (1.99, 4.81), P<0.001], age [OR=1.72, 95%CI (1.33, 2.21), P<0.001], right-sided lung surgery [OR=2.36, 95%CI (1.80, 3.10), P<0.001], lobectomy [OR=3.40, 95%CI (2.47, 4.68), P<0.001], upper lobectomy [OR=8.19, 95%CI (3.87, 17.36), P<0.001], lymph node dissection [OR=3.59, 95%CI (2.72, 4.72), P<0.001], bronchial stump closure method [OR=5.19, 95%CI (1.79, 16.07), P=0.002], and postoperative gastric acid reflux [OR=6.24, 95%CI (3.27, 11.91), P<0.001] were risk factors for persistent cough after lung resection, while smoking history was a protective factor against postoperative cough [OR=0.59, 95%CI (0.45, 0.77), P<0.001]. In addition, the quality of life score of patients with postoperative cough decreased compared with that before surgery [MD=1.50, 95%CI (0.14, 2.86), P=0.03]. Conclusion Current evidence suggests that females, age, right-sided lung surgery, lobectomy, upper lobectomy, lymph node dissection, bronchial stump closure method (stapler closure), and postoperative gastric acid reflux are independent risk factors for persistent postoperative cough in lung resection patients, while smoking history may be a protective factor against postoperative cough. This provides evidence-based information for clinical medical staff on how to prevent and reduce persistent postoperative cough in patients and improve their quality of life in the future.
10.Effect of Xinfeng Capsules Combined with Chronic Disease Management of Traditional Chinese Medicine on Rapid Disease Control and Short-term Prognosis of Patients with Rheumatoid Arthritis
Dandan TIAN ; Hong ZHAO ; Man LUO ; Shanping WANG ; Li YANG ; Tingting ZHANG ; Xi CHEN ; Chuanbing HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):137-144
ObjectiveTo investigate the effects of Xinfeng capsules combined with chronic disease management of traditional Chinese medicine (TCM) on rapid disease control and short-term prognosis of patients with rheumatoid arthritis (RA). MethodsA total of 80 RA patients hospitalized in the Department of Rheumatology of The First Affiliated Hospital of Anhui University of Chinese Medicine from January 2022 to March 2024 were enrolled and randomly divided into an observation group (40 cases) and a control group (40 cases). The control group was treated with conventional methotrexate combined with standard chronic disease management, while the observation group was additionally treated with Xinfeng Capsules combined with TCM chronic disease management. The treatment course lasted 24 weeks. The outcomes were compared between two groups, including disease activity [28-joint disease activity score (DAS28), clinical disease activity index (CDAI), simplified disease activity index (SDAI)], visual analogue scale (VAS) for pain, TCM syndrome score, tender joint count (TJC), swollen joint count (SJC), morning stiffness duration, Health Assessment Questionnaire (HAQ), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), American College of Rheumatology (ACR) 20%, 50% and 70% response rates (ACR20/50/70), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (hs-CRP), rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (CCP-Ab), interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and serum immunoglobulin G (IgG). The Chronic Disease Self-Management Scale (CDSMS) was used to evaluate patients’ self-management ability, self-care ability, and nursing satisfaction. Patients were followed up for 12 weeks to assess prognosis, and COX regression analysis was performed to determine the impact on short-term prognosis. ResultsAfter treatment, TJC, SJC, morning stiffness duration, DAS28, CDAI, SDAI, VAS, TCM syndrome score, ESR, hs-CRP, RF, CCP-Ab, IL-6, IL-1β, TNF-α, IgG, HAQ, SAS, SDS, chronic disease self-management behavior, self-efficacy, and self-care ability all improved significantly in both groups compared with baseline (P<0.05,P<0.01). Compared with the control group, the observation group showed more significant improvements in TJC, SJC, morning stiffness duration, DAS28, CDAI, SDAI, VAS, TCM syndrome score, ESR, IL-1β, IgG, HAQ, SAS, SDS, self-care ability, chronic disease self-management behavior, and self-efficacy (P<0.05 or P<0.01). The ACR70 response rate and nursing satisfaction were significantly higher in the observation group than in the control group (P<0.01). COX regression analysis showed that Xinfeng capsules combined with TCM chronic disease management reduced the risk of poor short-term prognosis in RA patients. ConclusionXinfeng capsules combined with TCM chronic disease management facilitates rapid disease control in RA patients, effectively improves short-term prognosis, and plays an important role in the treatment of the disease.

Result Analysis
Print
Save
E-mail