1.Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection.
Yun TAN ; Feng LIU ; Xiaoguang XU ; Yun LING ; Weijin HUANG ; Zhaoqin ZHU ; Mingquan GUO ; Yixiao LIN ; Ziyu FU ; Dongguo LIANG ; Tengfei ZHANG ; Jian FAN ; Miao XU ; Hongzhou LU ; Saijuan CHEN
Frontiers of Medicine 2020;14(6):746-751
The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered β Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4
Adaptive Immunity/physiology*
;
Adult
;
Aged
;
Antibodies, Neutralizing/blood*
;
COVID-19/immunology*
;
Cohort Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Male
;
Middle Aged
;
SARS-CoV-2/immunology*
;
T-Lymphocytes/physiology*
;
Time Factors
;
Viral Proteins/immunology*
2.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
3.Lymphatic vessels, miRNAs, and CAR T cells in tumor immunology.
Journal of Zhejiang University. Science. B 2020;21(1):1-2
This special feature contains three review articles that summarize recent advances pertaining to tumor immunobiology. Normalization of antitumor immunity through checkpoint inhibitors has achieved significant clinical success and benefited many cancer patients. However, not all cancer patients respond to these treatments, and among the responders, some may develop resistance and others may suffer autoimmunity that requires intervention. Tumor immunotherapy holds promise for further improving the survival of cancer patients, but deeper understanding of immunological networks that regulate anti- and pro-tumor immunity is needed. The review papers collected in this issue cover a few topics that may stimulate future interest in the relevant research field.
Humans
;
Immunotherapy, Adoptive/methods*
;
Lymphatic Vessels/physiology*
;
MicroRNAs/physiology*
;
Neoplasms/therapy*
;
Receptors, Chimeric Antigen/immunology*
;
T-Lymphocytes/immunology*
4.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
5.Diagnostic Utility of Interferon-Gamma Release Assay in Tuberculous Lymphadenitis.
Xin-Chao LIU ; Su-Su YE ; Wen-Ze WANG ; Yue-Qiu ZHANG ; Li-Fan ZHANG ; Xiao-Cheng PAN ; Zi-Yue ZHOU ; Miao-Yan ZHANG ; Jiang-Hao LIU ; Zhi-Yong LIANG ; Xiao-Qing LIU
Chinese Medical Sciences Journal 2019;34(4):233-240
Objective The aim of this study was to evaluate the diagnostic performance of T-SPOT.TB for tuberculous lymphadenitis. Methods Suspected tuberculous lymphadenitis patients between September 2010 and September 2018 who had both peripheral blood T-SPOT.TB test and lymph node biopsy were retrospectively enrolled in this study. The cutoff value of T-SPOT.TB test for peripheral blood was set as 24 spot forming cell (SFC)/10 6 periphreral blood monocyte cell (PBMC) according to the instruction of testing kits. The gold standard for diagnosis of TBL was the combination of microbiology results, histopathology results and patient's response to anti-TB treatment. Diagnostic efficacy of T-SPOT.TB was evaluated, including sensitivity, specificity, accuracy, predictive values, and likelihood ratio. Results Among 91 patients who met the inclusion criteria, we excluded 8 cases with incomplete clinical information and 6 cases who lost to follow-up. According to the gold standard, there were 37 cases of true TBL (9 confirmed TBL and 28 probable TBL), 30 cases of non-TBL, and 10 cases of clinically indeterminate diagnosis who were excluded from the final analyses. The T-SPOT.TB tests yielded 43 cases of positive response and 24 cases of negative response. The sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR) and negative likelihood ratio (NLR) of peripheral blood T-SPOT.TB for diagnosing TBL were 89.2%, 66.7%, 79.1%, 76.7%, 83.3%, 2.68 and 0.16, respectively. The number of SFCs of T-SPOT.TB in TBL patients [432(134-1264)/10 6 PBMCs] was higher than that in non-TBL patients [0 (0-30) /10 6PBMCs] with a significant difference (Z=-5.306, P <0.001). Conclusion T-SPOT.TB is a rapid and simple diagnostic test for TBL with a high sensitivity and negative predictive value.
Adolescent
;
Adult
;
Aged
;
Female
;
Humans
;
Interferon-gamma Release Tests
;
Male
;
Middle Aged
;
Mycobacterium tuberculosis/physiology*
;
T-Lymphocytes/immunology*
;
Tuberculosis, Lymph Node/diagnosis*
;
Young Adult
6.Regulation of T cell immunity by cellular metabolism.
Zhilin HU ; Qiang ZOU ; Bing SU
Frontiers of Medicine 2018;12(4):463-472
T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific metabolic programs are tightly controlled to mediate T cell immune responses, and alterations in T cell metabolism may result in many immunological disorders. In this review, we will summarize the main T cell metabolic pathways and the important factors participating in T cell metabolic programming during T cell homeostasis, differentiation, and function.
Animals
;
Cell Physiological Phenomena
;
Humans
;
Immunity, Cellular
;
physiology
;
Metabolic Networks and Pathways
;
immunology
;
T-Lymphocytes
;
immunology
;
metabolism
7.Intracellular and extracellular TGF-β signaling in cancer: some recent topics.
Kohei MIYAZONO ; Yoko KATSUNO ; Daizo KOINUMA ; Shogo EHATA ; Masato MORIKAWA
Frontiers of Medicine 2018;12(4):387-411
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
Drug Discovery
;
Humans
;
Lung Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Membrane Proteins
;
metabolism
;
Pancreatic Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Signal Transduction
;
drug effects
;
physiology
;
T-Lymphocytes, Regulatory
;
metabolism
;
Transforming Growth Factor beta
;
antagonists & inhibitors
;
immunology
;
metabolism
8.Relationship between expression of peripheral blood HLA-DR, CD4CD25 regulatory T cells, IL-17 and IL-27 with liver damage in children with human cytomegalovrius infection.
Li-Li ZHU ; Ling XU ; Jun WANG
Chinese Journal of Contemporary Pediatrics 2018;20(7):554-558
OBJECTIVETo study the relationship between the expression of peripheral blood HLA-DR, CD4CD25 regulatory T cells, IL-17 and IL-27 with liver damage in children with human cytomegalovirus (HCMV) infection.
METHODSTwenty-one HCMV children with liver damage and twenty-one HCMV children without liver damage were enrolled in this study. The expression of peripheral blood HLA-DR and CD4CD25 regulatory T cells was detected by flow cytometry. Plasma levels of IL-17 and IL-27 were measured using ELISA.
RESULTSThe plasma levels of IL-17 and IL-27 in children with liver damage were significantly higher than in those without liver damage, while the expression of peripheral blood CD4CD25 regulatory T cells was lower than in those without liver damage (P<0.05). Plasma IL-17 and IL-27 levels were negatively correlated with the expression of peripheral blood CD4CD25 regulatory T cells (P<0.01).
CONCLUSIONSImmune imbalance mediated by CD4CD25 regulatory T cells and over-expression of IL-17 and IL-27 may be involved in the pathogenesis of liver damage in children with HCMV infection.
CD4 Antigens ; immunology ; Cytomegalovirus ; physiology ; Cytomegalovirus Infections ; blood ; complications ; genetics ; Female ; Flow Cytometry ; HLA-DR Antigens ; genetics ; immunology ; Humans ; Infant ; Interleukin-17 ; blood ; genetics ; Interleukin-2 Receptor alpha Subunit ; immunology ; Interleukins ; blood ; genetics ; Liver ; injuries ; metabolism ; Liver Diseases ; blood ; etiology ; immunology ; Male ; T-Lymphocytes, Regulatory ; immunology
9.Research advances in mesenchymal stem cell-derived exosomes in treatment of brain injury.
Chinese Journal of Contemporary Pediatrics 2017;19(12):1285-1290
Mesenchymal stem cell (MSC) transplantation is considered one of the most promising therapeutic strategies for the repair of brain injuries and plays an important role in various links of nerve repair. Recent studies have shown that MSC-derived exosomes may dominate the repair of brain injuries and help to promote angiogenesis, regulate immunity, inhibit apoptosis, and repair the nerves, and therefore, they have a great potential in the treatment of brain injuries in neonates. With reference to these studies, this article reviews the mechanism of action of exosomes in the repair of brain injuries and related prospects and challenges, in order to provide new directions for the treatment of brain injuries in neonates with stem cells.
Apoptosis
;
Brain Injuries
;
therapy
;
Exosomes
;
physiology
;
Humans
;
Inflammation
;
prevention & control
;
Mesenchymal Stem Cell Transplantation
;
Neovascularization, Physiologic
;
T-Lymphocytes
;
immunology
10.Transcriptional regulators dictate innate lymphoid cell fates.
Protein & Cell 2017;8(4):242-254
Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4 T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial transcription factors, which are also involved in the development or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mechanisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.
Animals
;
GATA3 Transcription Factor
;
immunology
;
Humans
;
Immunity, Innate
;
physiology
;
Inhibitor of Differentiation Protein 2
;
immunology
;
Killer Cells, Natural
;
immunology
;
T-Lymphocytes, Helper-Inducer
;
immunology

Result Analysis
Print
Save
E-mail