1.Effect of Juanbi Qianggu Formula on biological behaviors of fibroblast-like synoviocytes in rheumatoid arthritis by regulating FGFR1 signaling pathway based on network pharmacology and cell function experiments.
Xiao-Hui MENG ; Sheng ZHONG ; Hai-Hui HAN ; Qi SHI ; Song-Tao SUN ; Lian-Bo XIAO
China Journal of Chinese Materia Medica 2023;48(18):4864-4873
This study aimed to explore the molecular mechanism of Juanbi Qianggu Formula(JBQGF), an empirical formula formulated by the prestigious doctor in traditional Chinese medicine, in the treatment of rheumatoid arthritis based on network pharmacology and cell function experiments. The main active components and targets of JBQGF were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and Encyclopedia of Traditional Chinese Medicine(ETCM), and the core targets underwent functional enrichment analysis and signaling pathway analysis. Cytoscape 3.6.0 was used to construct a visualized "active component-target-signaling pathway" network of JBQGF. After screening, nine potential pathways of JBQGF were obtained, mainly including G protein-coupled receptor signaling pathway and tyrosine kinase receptor signaling pathway. As previously indicated, the fibroblast growth factor receptor 1(FGFR1) signaling pathway was highly activated in active fibroblast-like synoviocytes(FLS) in rheumatoid arthritis, and cell and animal experiments demonstrated that inhibition of the FGFR1 signaling pathway could significantly reduce joint inflammation and joint destruction in collagen-induced arthritis(CIA) rats. In terms of the tyrosine kinase receptor signal transduction pathway, the analysis of its target genes revealed that FGFR1 might be a potential target of JBQGF for rheumatoid arthritis treatment. The biological effect of JBQGF by inhibiting FGFR1 phosphorylation was preliminarily verified by Western blot, Transwell invasion assay, and pannus erosion assay, thereby inhibiting matrix metalloproteinase 2(MMP2) and receptor activator of nuclear factor-κB ligand(RANKL) and suppressing the invasion of fibroblasts in rheumatoid arthritis and erosive effect of pannus bone. This study provides ideas for searching potential targets of rheumatoid arthritis treatment and TCM drugs through network pharmacology.
Rats
;
Animals
;
Synoviocytes
;
Matrix Metalloproteinase 2/metabolism*
;
Network Pharmacology
;
Receptor, Fibroblast Growth Factor, Type 1/therapeutic use*
;
Arthritis, Rheumatoid/genetics*
;
Signal Transduction
;
Fibroblasts
;
Drugs, Chinese Herbal/therapeutic use*
2.Chemical constituents from stems and leaves of Cratoxylum cochinchinense and their inhibitory effects on proliferation of synoviocytes in vitro.
Yong ZHANG ; Ni-Fei SHI ; Zhen XIE ; Yi-Meng ZHAO ; Cai-Huan LIANG ; Ya-Yuan DENG ; Ran WANG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(18):5014-5023
The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3β-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) μmol·L~(-1).
Synoviocytes
;
Clusiaceae/chemistry*
;
Xanthones/analysis*
;
Plant Leaves/chemistry*
;
Cell Proliferation
;
Arthritis
3.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
4.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation
5.Chemical constituents from fruits of Morinda citrifolia and their inhibitory effects on proliferation of synoviocytes in vitro.
Zhang-Yang SHEN ; Ruo-Qing GUAN ; Meng-Ran DU ; Yuan BIAN ; Yu WANG ; Xin-Yuan SUO ; Shu-Hong XIONG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(1):105-113
The chemical constituents from the fruits of Morinda citrifolia were systematically explored by chromatographic fractionation methods including silica gel, octadecylsilyl(ODS) gel, Sephadex LH-20 gel, and preparative high performance liquid chromatography(pre-HPLC). The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, as well as the comparisons of their physicochemical and spectroscopic data with the reported data in literature. As a result, 22 isolated compounds from the 90% ethanol extract of the fruits of M. citrifolia were identified, which were moricitritone(1), 2'-deoxythymidine(2), cyclo-(L-Pro-L-Tyr)(3), methyl-5-hydroxy-2-pyridinecarboxylate(4), methyl pyroglutamate(5), bisbenzopyran(6), epipinoresinol(7), 3, 3'-bisdemethyl pinoresinol(8), 3, 3'-bisdemethyltanegool(9), trimesic acid(10), crypticin B(11), kojic acid(12), vanillic acid(13), protocatechoic acid(14), 5-hydroxymethyl furfural(15), blumenol A(16), 1-O-(9Z, 12Z-octadecadienoyl) glycerol(17), mucic acid dimethylester(18), methyl 2-O-β-D-glucopyranosylbenzoate(19), 2-phenylethyl-O-β-D-glucoside(20), scopoletin(21), and quercetin(22). Among them, compound 1 was a new pyrone derivative, compounds 2, 4-7, 10-12, and 17 were isolated from the plants belonging to Morinda genus for the first time, and compound 18 was obtained from M. citrifolia for the first time. Moreover, on the basis of testing the activities of all isolated compounds on inhibiting the proliferation of synovial fibroblasts in vitro by MTS assay, the anti-rheumatoid arthritis activities of all isolated compounds were initially evaluated. The results showed that compounds 1-6, 9, 19, and 20 exhibited remarkable anti-rheumatoid arthritis activities, which displayed the inhibitory effects on the proliferation of MH7A synovial fibroblast cells with the IC_(50) values in the range of(3.69±0.08) to(168.96±0.98) μmol·L~(-1).
Fruit/chemistry*
;
Morinda/chemistry*
;
Synoviocytes
;
Cell Proliferation
;
Arthritis
6.Chemical constituents from Artocarpus incisus and their inhibitory effects on proliferation of synoviocytes in vitro.
Yu-Tong XIE ; Shu-Hong XIONG ; Yuan BIAN ; Yu WANG ; Ruo-Qing GUAN ; Xin-Yuan SUO ; Meng-Ran DU ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2022;47(17):4665-4673
The chemical constituents from the branches and leaves of Artocarpus incisus were isolated and purified via silica gel, ODS, and Sephadex LH-20 column chromatography as well as preparative HPLC. The chemical structures of all isolated compounds were identified in the light of their physicochemical properties, spectroscopic analyses, and comparisons of their physicochemical and spectroscopic data with the reported data in literature. As a result, 20 compounds were isolated and characterized from the 90% ethanol extract of the branches and leaves of A. incisus, which were identified as tephrosin(1), 6-hydroxy-6 a, 12 a-dehydrodeguelin(2), sarcolobin(3), lupiwighteone(4), 12-deoxo-12α-methoxyelliptone(5), 6 aα,12 aα-12 a-hydroxyelliptone(6), homopterocarpin(7), 3-hydroxy-8,9-dimethoxypterocarpan(8), pterocarpin(9), maackiain(10), medicarpin(11), calycosin(12), genistein(13), formononetin(14), 5-hydroxy-4',7-dimethoxy isoflavone(15), liquiritigenin(16), 4(15)-eudesmene-1β,7α-diol(17), ent-4(15)-eudesmene-1β,6α-diol(18), 1α-hydroxyisodauc-4-en-15-al(19), and guaianediol(20). Except compounds 13 and 16, all other compounds were isolated from the Artocarpus plants for the first time. Additionally, using MTS assay, compounds 1-20 were eva-luated for their anti-rheumatoid arthritis activities by measuring their anti-proliferative effects on synoviocytes in vitro. As a consequence, compounds 1-16 showed notable anti-rheumatoid arthritis activities, which displayed inhibitory effects on the proliferation of MH7 A synovial fibroblast cells, with the IC_(50) values in range of(9.86±0.09)-(218.07±1.96) μmol·L~(-1).
Arthritis
;
Artocarpus
;
Cell Proliferation
;
Ethanol
;
Genistein
;
Plant Extracts/pharmacology*
;
Silica Gel
;
Synoviocytes
7.Cheng's Juanbi Decoction enhances autophagy in rheumatoid arthritis fibroblast-like syn-oviocytes by suppressing the PI3K/Akt/mTOR signal axis.
Guang Han SUN ; Xia XU ; Lei WAN ; Shu Ling NAN ; Yu Feng WANG ; Li ZHAO ; Hui CHENG ; Kun WANG ; Ying LIU ; Yan Yan FANG ; Lang SUN ; Jun ZHU
Journal of Southern Medical University 2022;42(11):1726-1731
OBJECTIVE:
To study the regulatory effect of Cheng's Juanbi Decoction (JBT) on autophagy in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and role of PI3K/Akt/mTOR signaling axis in the mechanism mediating this effect.
METHODS:
CCK8 assay was used to determine the optimal concentration and treatment time of JBT for inhibiting the viability of RA- FLS. The effect of freeze-dried powder of JBT, RAPA, or both on morphology of the autophagosomes in RA-FLS was observed under transmission electron microscope, and the changes in the number of autophagosomes and autolysosomes were observed with autophagy double-labeled adenovirus experiment. RT-qPCR and Western blotting were used to detect the expression levels of the related indicators.
RESULTS:
The results of CCK8 assay showed that treatment with 0.5 mg/mL JBT for 12 h produced the optimal effect for inhibiting RA-FLS viability. Observation with transmission electron microscope and the results of the autophagy double-labeled adenovirus experiment both showed the presence of a small number of autophagosomes in control RA-FLS group, and treatment with JBT significantly increased the number of autophagosomes and lowered the number of autophagolysosomes in the cells. Compared with the control cells and the cells treated with JBT or RAPA alone, the cells treated with both JBT and RAPA showed significantly decreased mRNA levels of PI3K, Akt and mTOR (P < 0.01) but without significant changes in their protein expressions (P > 0.05); the combined treatment significantly inhibited the protein expressions of p-PI3K, p-Akt, p-mTOR, and P62 (P < 0.05) and upregulated the protein expressions of Beclin-1 and LC3B (P < 0.05) in the cells.
CONCLUSION
JBT can inhibit the survival rate of RA-FLS and increase the level of autophagy possibly through a mechanism that down-regulates PI3K/Akt/mTOR signaling pathway.
Humans
;
Phosphatidylinositol 3-Kinases
;
Autophagy
;
Fibroblasts
;
Synoviocytes
;
Arthritis, Rheumatoid
;
Adenoviridae
;
TOR Serine-Threonine Kinases
8.Effect of swertiamarin, gentiopicrin and sweroside on cell apoptosis and expression of Bcl-2 in rheumatoid arthritis fibroblast-like synoviocytes.
Chen WU ; Yun WEI ; Shan GE ; Hui-Qin GAO
China Journal of Chinese Materia Medica 2021;46(2):406-411
The aim of this paper was to discuss the effect of swertiamarin, gentiopicrin and sweroside on rheumatoid arthritis fibroblast-like synoviocytes(RA-FLSs) and B-cell lymphoma-2(Bcl-2) and their mechanisms. ZINC database and RCSB PDB database were retrieved for 3 D chemical structures of swertiamarin, gentiopicrin and sweroside and 3 D target protein structures. AutoDock Mgltools 1.5.6, AutoDockVina 1.1.2 and pyMOL 2.2.0 were applied for molecular docking to analyze the relationship between Bcl-2(1 GJH) target protein and important ingredients. The cell apoptosis of RA-FLSs was tested by Annexin V-FITC. The Bcl-2 protein expression of RA-FLSs treated with different ingredients was tested by Western blot. The Bcl-2 mRNA expression of RA-FLSs treated with different ingredients was tested by RT-PCR. Swertiamarin, gentiopicrin and sweroside were docked well with Bcl-2(1 GJH). The binding energy of swertiamarin was-6.9 kcal·mol~(-1), the binding energy of gentiopicrin was-6.7 kcal·mol~(-1) and the binding energy of sweroside was-6.4 kcal·mol~(-1). Compared with the blank group, the Bcl-2 protein expression of each group were reduced, while that of the gentiopicrin group was the highest(P<0.01). Compared with the blank group, the Bcl-2 mRNA expression of each groups were reduced. Gentiopicrin can reduce the Bcl-2 protein expression and the Bcl-2 mRNA expression, so as to promote the RA-FLSs apoptosis.
Apoptosis
;
Arthritis, Rheumatoid/genetics*
;
Cell Proliferation
;
Cells, Cultured
;
Fibroblasts
;
Humans
;
Iridoid Glucosides
;
Molecular Docking Simulation
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Pyrones
;
Synoviocytes
9.Effect of Xinfeng Capsules-containing serum on TNF-α-induced apoptosis and inflammation of fibroblast-like synoviocytes in rheumatoid arthritis.
Jian-Ting WEN ; Jian LIU ; Xin WANG ; Jie WANG
China Journal of Chinese Materia Medica 2021;46(2):436-443
The aim of this paper was to observe the effect of Xinfeng Capsules(XFC)-containing serum on the apoptosis and inflammation of fibroblast-like synoviocytes(FLS) in rheumatoid arthritis(RA) induced by tumor necrosis factor-α(TNF-α), so as to investigate the mechanism of XFC in the treatment of RA. RA-FLS immortalized cell line was established, and XFC drug-containing serum was prepared. CCK-8, ELISA, RT-qPCR, immunofluorescence and TUNEL were used to observe the effect of XFC-containing serum on RA-FLS apoptosis and inflammatory indexes. CCK-8 results showed that the optimal concentration and time of TNF-α on RA-FLS were 10 ng·mL~(-1) and 48 h, respectively; and the optimal concentration and time of XFC on RA-FLS were 6.48 mg·g~(-1) and 72 h, respectively. The results of ELISA showed that compared with RA-FLS group, the expressions of TNF-α, IL-1β, IL-6, IL-8 in TNF-α+RA-FLS group were significantly increased, while the expressions of IL-4 and IL-10 were significantly decreased(P<0.01); after intervention with XFC-containing serum, the expressions of TNF-α, IL-1β, IL-6, IL-8 were significantly decreased, whereas the expressions of IL-4 and IL-10 were significantly increased(P<0.01). The results of RT-qPCR showed that compared with RA-FLS group, the mRNA expressions of Fas, FasL, caspase-3, caspase-8, Bax, Bcl-X1 in TNF-α+RA-FLS group were significantly decreased, while the mRNA expression of Bcl-2 was significantly increased(P<0.001); after intervention with XFC-containing serum, the mRNA expressions of Fas, FasL, caspase-3, caspase-8, Bax, Bcl-X1 were significantly increased, whereas the mRNA expression of Bcl-2 was significantly decreased(P<0.01). The results of immunofluorescence showed that compared with RA-FLS group, the protein expressions of caspase-3 and Bax in TNF-α+RA-FLS group was significantly lower than those in RA-FLS group(P<0.05); after intervention with XFC-containing serum, the protein expressions of caspase-3 and Bax were significantly increased, whereas the protein expression of Bcl-2 was significantly decreased(P<0.05). TUNEL results showed that compared with RA-FLS group, the apoptosis of TNF-α+RA-FLS group was decreased(P<0.05); after intervention with XFC-containing serum, the apoptosis was significantly increased(P<0.05). One of the mechanisms of XFC in the treatment of RA is to promote the apoptosis of RA-FLS and inhibit its inflammatory reaction.
Apoptosis
;
Arthritis, Rheumatoid/genetics*
;
Capsules
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
Fibroblasts
;
Humans
;
Inflammation
;
Synovial Membrane
;
Synoviocytes
;
Tumor Necrosis Factor-alpha/genetics*
10.Chemical constituents from Morinda citrifolia and their inhibitory activities on proliferation of synoviocytes in vitro.
Ying-Ying ZHAO ; Qiao-Mei YU ; Ze-Hua QIAO ; Juan LI ; Hao-Xuan TANG ; Guang-Ying CHEN ; Yan-Hui FU
China Journal of Chinese Materia Medica 2021;46(10):2519-2526
The chemical constituents from the stems and leaves of Morinda citrifolia were isolated and purified by column chromatography methods with silica gel, ODS, Sephadex LH-20 and preparative high performance liquid chromatography(HPLC). The structures of the isolated compounds were identified by physicochemical properties and spectroscopic analysis, as well as comparisons with the data reported in literature. 17 compounds were isolated from the 90% ethanol extract of the stems and leaves of M. citrifolia, and were identified as 9,10-dihydroxy-4, 7-megastigmadien-3-one(1), 5,12-epoxy-6,9-hydroxy-7-megastigmen-3-one(2), fukinone(3), β-eudesmol(4), sarmentol F(5), 4, 5-dihydroblumenol A(6), 3-hydroxy-β-ionone(7), aristol-8-en-1-one(8), ergosta-7-en-3β-ol(9), ergosta-7-ene-3β,5α,6β-triol(10),(22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol(11), olivil(12), 4-epi-larreatricin(13), chushizisin Ⅰ(14), rabdosia acid A(15), glycerol monolinoleate(16) and(9Z,12Z,15Z)-2,3-dihydroxypropyl octadeca-trienoate(17). All compounds were isolated from M. citrifolia for the first time. All isolated compounds were evaluated for their anti-rheumatoid arthritis activities via examining their inhibitory activities on the proliferation of synoviocytes in vitro using MTS met-hod. Compounds 1-11 showed significant anti-rheumatoid arthritis activities, displaying the inhibitory effects on the proliferation of MH7 A synovial fibroblast cell with the IC_(50) values ranging from(38.69±0.86) to(203.45±1.03) μmol·L~(-1).
Cell Proliferation
;
Chromatography, High Pressure Liquid
;
Molecular Structure
;
Morinda
;
Synoviocytes

Result Analysis
Print
Save
E-mail