1.Research progress in active substances and their mechanisms of action against porcine epidemic diarrhea virus.
Yu LIU ; Sisi SU ; Ziqian WANG ; Jiahao WU ; Hongwei CHEN ; Hongzao YANG
Chinese Journal of Biotechnology 2025;41(7):2519-2533
Porcine epidemic diarrhea virus (PEDV) is an intestinal coronavirus that can cause porcine epidemic diarrhea, leading to diarrhea, vomiting, weight loss, and even death in piglets. Due to the diversity of PEDV strains, traditional vaccines are difficult to sustainably and effectively prevent and control PEDV. This article reviews the strategies and mechanisms of active substances in regulating intracellular signaling pathways, viral proteins, and microbial metabolites to enhance the host immune function against PEDV. It emphasizes the prevention of PEDV resistance and the potential harm of PEDV breaking through interspecies barriers to the human society, aiming to provide reliable theoretical support for the development of new antiviral drugs or vaccines.
Porcine epidemic diarrhea virus/immunology*
;
Animals
;
Swine
;
Swine Diseases/prevention & control*
;
Antiviral Agents/pharmacology*
;
Coronavirus Infections/virology*
;
Viral Vaccines/immunology*
;
Humans
;
Signal Transduction
2.Novel cecropin D-derived peptide with inhibitory effect on porcine reproductive and respiratory syndrome virus entry.
Haoyue ZANG ; Jie PENG ; Huichen GUO ; Shiqi SUN ; Qiaoying ZENG ; Jingjing ZHOU
Chinese Journal of Biotechnology 2025;41(7):2735-2747
Porcine reproductive and respiratory syndrome (PRRS), caused by the porcine reproductive and respiratory syndrome virus (PRRSV), is one of the major diseases threatening the swine industry. This study aims to rationally design and optimize natural antimicrobial peptides to identify antiviral candidates with potent inhibitory activity against PRRSV, thereby establishing a foundation for the development of novel preventive and therapeutic agents targeting PRRS. In this study, with cecropin D (CD) as the parent peptide, three derivatives (CD-2, CD-3, and CD-4) were designed through amino acid substitutions. CD and derived peptides were obtained by solid-phase peptide synthesis. MS and reversed-phase (RP)-HPLC were employed for sequence identification, purification, and purity analysis. The secondary structures of the peptides were investigated by circular dichroism spectroscopy. CellTiter 96® AQueous one solution cell proliferation assay was used to evaluate the cytotoxicity of the peptides. The inhibitory activities and mechanisms of the peptides against PRRSV were studied by Western blotting, RT-qPCR, and indirect immunofluorescence assay. The MS and RP-HPLC results showed that CD and derived peptides were successfully synthesized, with the purity reaching up to 95%. Circular dichroism analysis revealed that the CD derivatives exhibited more stable and abundant α-helices in a cell membrane-mimicking environment. The MTS assay indicated that all tested peptides at 100 μg/mL had negligible cytotoxicity. The experimental results of the action phase of the peptide against PRRSV demonstrated that the derived peptides significantly enhanced antiviral activities at the viral entry stage compared with the parent peptide. This enhancement was attributed to the introduction of lysine, tryptophan, and phenylalanine, which increased the hydrophobicity and positive charge of the peptides. These findings provide a theoretical basis for the application and structural optimization of antiviral peptides and may offer a new strategy for preventing and controlling PRRSV.
Porcine respiratory and reproductive syndrome virus/physiology*
;
Animals
;
Swine
;
Antiviral Agents/chemistry*
;
Porcine Reproductive and Respiratory Syndrome/virology*
;
Virus Internalization/drug effects*
;
Antimicrobial Peptides/chemistry*
3.Development and evaluation of a competitive ELISA based on a porcine neutralizing Fab antibody against Senecavirus A.
Yubin LIANG ; Xueqing MA ; Yixuan HE ; Caihe WANG ; Kun LI ; Pinghua LI ; Yuanfang FU ; Zengjun LU ; Xiaohua DU ; Xia LIU ; Pu SUN
Chinese Journal of Biotechnology 2025;41(7):2748-2759
Senecavirus A (SVA) is a major viral pathogen causing disease in pigs, and effective monitoring of SVA infection is critical for disease control. In this study, we aimed to develop a reliable ELISA method for rapidly detecting neutralizing antibodies against SVA. We used HEK293F cells to express an SVA-specific porcine Fab antibody and verified the biological activity of the Fab antibody by indirect ELISA, immunofluorescence assay, virus neutralization test, and Western blotting. The Fab antibody was biotinylated and used as a competitive antibody to establish a competitive ELISA (C-ELISA) for detecting neutralizing antibodies against SVA. We then evaluated the C-ELISA in terms of sensitivity, specificity, repeatability, and result agreement rate with the VNT. The results showed that we successfully prepared an SVA-specific porcine Fab antibody, which showed high affinity for SVA. We named this antibody 1M33Fab and designated it as Bio-1M33Fab after biotin labeling. The assay conditions were optimized as follows: the coating concentration of SVA particles being 1 μg/mL, the working concentration of Bio-1M33Fab being 0.5 μg/mL, the optimal serum dilution of 1:10, and the optimal dilution of enzyme-labeled avidin being 1:30 000. At a percent inhibition (PI) of 47%, the assay demonstrated the highest sensitivity (96.88%) and specificity (100%), with no cross-reactivity observed with the positive sera of major porcine viral diseases. The intra-assay coefficient of variation ranged from 1.12% to 7.34%, while the inter-assay coefficient of variation ranged from 1.10% to 8.97%, indicating good repeatability. In the detection of 224 clinical pig serum samples, C-ELISA and VNT showed a result agreement rate of 93.75%. In conclusion, we successfully develop a C-ELISA method for detecting neutralizing antibodies against SVA by using a porcine-derived Fab antibody, which lays a foundation for the development of detection kits.
Animals
;
Swine
;
Antibodies, Neutralizing/immunology*
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Immunoglobulin Fab Fragments/immunology*
;
Antibodies, Viral/immunology*
;
Picornaviridae/immunology*
;
Humans
;
HEK293 Cells
;
Swine Diseases/diagnosis*
;
Picornaviridae Infections/diagnosis*
4.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
5.Establishment and optimization of a high-performance size-exclusion chromatography method for quantifying the classical swine fever virus E2 protein.
Xiaojuan ZHANG ; Bo YANG ; Gaoyuan XU ; Mingxing REN ; Ji TANG ; Hongshuo LIU ; Zhankui LIU ; Yafei LI ; Xiangru WANG
Chinese Journal of Biotechnology 2025;41(7):2774-2788
This study aims to establish a high-performance size-exclusion chromatography (HPSEC) method for determining the content of the classical swine fever virus (CSFV) E2 protein and screen the optimal stabilizer to enhance the stability of this protein. The optimal detection conditions were determined by optimizing the composition of the mobile phase, and characteristic chromatographic peaks were identified by SDS-PAGE and Western blotting. The specificity, repeatability, precision, linearity, limit of detection (LOD), and limit of quantitation (LOQ) of the method were assessed. The method established was used to determine the content of CSFV E2 protein antigen and vaccine. Differential scanning fluorimetry (DSF) was employed to screen the buffer system, pH, and salt ion concentrations, and sugar, amino acid, and alcohol stabilizers were further screened. The results showed that using a 200 mmol/L phosphate buffer provided the best column efficiency. An antigen-specific chromatographic peak appeared at the retention time of 18 min, which was identified as the CSFV E2 protein by SDS-PAGE and Western blotting. The method exhibited high specificity for detecting the CSFV E2 protein, with no absorbance peak observed in the blank control. The relative standard deviation (RSD) of the peak area for six repeated injections of the CSFV E2 protein was 0.74%, indicating good repeatability of the method. The RSD for repeated detection of two different concentrations of CSFV E2 protein samples by different operators at different time points was less than 2%, suggesting good intermediate precision of the method. The peak area of the CSFV E2 protein was linearly related to its concentration, with the regression equation showing R2 of 1.000. The LOD and LOQ of the method were 14.88 μg/mL and 29.75 μg/mL, respectively. Application of the developed method in the detection of three batches of CSFV E2 protein antigen and three batches of vaccine demonstrated results consistent with those from the bicinchoninic acid (BCA) assay, which meant that the method could accurately determine the content of CSFV E2 protein antigen and vaccine. The DSF method identified 50 mmol/L Tris-HCl at pH 8.0 as the optimal buffer, and the addition of sugar and alcohol stabilizers further improved the stability of the CSFV E2 protein. The HPSEC method established in this study is simple, fast, and exhibits good accuracy and repeatability, enabling precise measurement of the CSFV E2 protein content. It is expected to play a crucial role in the quality control of the CSFV E2 vaccine. Furthermore, the strategy for improving the CSFV E2 protein stability, identified through DSF screening, has significant implications for enhancing the stability of the CSFV E2 vaccine.
Classical Swine Fever Virus/chemistry*
;
Chromatography, Gel/methods*
;
Animals
;
Swine
;
Viral Envelope Proteins/immunology*
6.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
7.Screening and identification of host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus.
Jinlei SUN ; Ruiming YU ; Liping ZHANG ; Zhongwang ZHANG ; Yonglu WANG ; Li PAN ; Quanwei ZHANG ; Xinsheng LIU
Chinese Journal of Biotechnology 2024;40(12):4533-4545
To screen and identify the key host proteins interacting with the non-structural protein 15 (Nsp15) of porcine epidemic diarrhea virus (PEDV). The IP/pull-down assay and mass spectrometry were employed to screen and identify the host proteins interacting with Nsp15. The interaction between the host protein and Nsp15 was studied by co-immunoprecipitation and laser scanning confocal microscopy. Finally, Western blotting and RT-qPCR were employed to examine the interaction between SLC25a3 and PEDV. The recombinant eukaryotic expression vector pcDNA3.1(+)-Flag-Nsp15 was successfully constructed, and the host protein SLC25a3 interacting with PEDV Nsp15 was screened out. An interaction existed between SLC25a3 and Nsp15, and SLC25a3 significantly inhibited PEDV replication in a dose-dependent manner. SLC25a3 inhibits PEDV replication. The results of this study provide a basis for deciphering the role and mechanism of SLC25a3 in the host immune response to PEDV infection.
Porcine epidemic diarrhea virus/genetics*
;
Viral Nonstructural Proteins/metabolism*
;
Animals
;
Swine
;
Virus Replication
;
Coronavirus Infections/veterinary*
;
Swine Diseases/metabolism*
8.Porcine reproductive and respiratory syndrome virus infection induces glycolysis of macrophages to facilitate viral replication.
Dianning DUAN ; Yanan LI ; Yanjiao LIANG ; Shiting HUANG ; Jiankui LIU ; Longxin QIU ; Hongbo CHEN
Chinese Journal of Biotechnology 2024;40(12):4546-4556
This work aims to explore the effect of glycolysis on the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in porcine alveolar macrophages (PAMs). The changes of glucose metabolism, PRRSV protein levels, PRRSV titers, and the relative expression levels of genes and proteins in PAMs were analyzed by ELISA, qPCR, virus titration, and Western blotting after PRRSV infection. The effect of hypoxia-inducible factor-1α (HIF-1α) on PRRSV replication was subsequently assessed by specific siRNAs targeting to HIF-1α. The results showed that PRRSV infection enhanced glycolysis, elevated the levels of glucose uptake and lactate in the supernatant (P<0.05 and 0.01, respectively), reduced ATP production (P<0.05), and up-regulated the expression of hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), and pyruvate kinase isozyme type M2 (PKM2) in PAMs (P<0.05 and 0.01, respectively). Glycolysis inhibitors down-regulated the expression of PRRSV proteins and reduced virus titers (P<0.01). The knockdown of HIF-1α by siRNAs inhibited glycolysis and lowered PRRSV titers (P<0.05). In addition, the interferon pathways inhibited by PRRSV infection were reversed by the inhibition of glycolysis. These findings may facilitate further investigation of the role of glycolysis in PRRSV replication.
Porcine respiratory and reproductive syndrome virus/physiology*
;
Glycolysis
;
Swine
;
Animals
;
Virus Replication
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Macrophages, Alveolar/metabolism*
;
Porcine Reproductive and Respiratory Syndrome/virology*
;
Cells, Cultured
;
RNA, Small Interfering/genetics*
9.Development of porcine induced pluripotent stem cells with a CD163 reporter system.
Wei YUE ; Juqing ZHANG ; Xiaolong WU ; Xinchun YANG ; Qiaoyan SHEN ; Shuai YU ; Zhenshuo ZHU ; Chengbao WANG ; Shiqiang ZHANG ; Jinlian HUA
Chinese Journal of Biotechnology 2023;39(1):192-203
As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.
Swine
;
Animals
;
Induced Pluripotent Stem Cells/metabolism*
;
Receptors, Cell Surface/genetics*
;
Antigens, CD/metabolism*
;
Porcine respiratory and reproductive syndrome virus/genetics*
10.Advances in innate immune responses induced by Mycoplasma hyopneumoniae infection.
Jiacui LAI ; Jiawei HE ; Honglei DING
Chinese Journal of Biotechnology 2023;39(12):4773-4783
Mycoplasma hyopneumoniae is the pathogen causing swine mycoplasmal pneumonia. The lack of well-established animal models of M. hyopneumoniae infection has delayed the progress of M. hyopneumoniae-related anti-infection immunity studies. This paper reviews the inflammatory response, the recognition of M. hyopneumoniae by the innate immune system, and the role of innate immune cells, complement system, antimicrobial peptides, autophagy, and apoptosis in M. hyopneumoniae infection. The aim was to elucidate the important roles played by the components of the innate immune system in the control of M. hyopneumoniae infection, and prospect key research directions of innate immune response of M. hyopneumoniae infection in the future.
Animals
;
Swine
;
Mycoplasma hyopneumoniae
;
Pneumonia of Swine, Mycoplasmal
;
Immunity, Innate

Result Analysis
Print
Save
E-mail