1.Effects of catgut embedding and PGLA embedding at "Zusanli" (ST 36) on skin mast cells, substance P and histamine in healthy rats.
Yu-Jia WANG ; Li-Hong LI ; Xun-Rui HOU ; Hong-Fang NIE ; Xin LIANG ; Qian ZHANG ; Ling CHENG ; Ting-Ting YE
Chinese Acupuncture & Moxibustion 2023;43(8):944-950
OBJECTIVE:
To observe the effects of catgut embedding and polyglycolic acid/poly-lactic acid (PGLA) embedding at "Zusanli" (ST 36) on the activation of local skin mast cells (MC), and expression of substance P (SP) and histamine (HA), and to explore the mechanism of the temporal stimulation effect of acupoint catgut embedding and provide a foundation for further research on the initiation mechanism of acupoint catgut embedding.
METHODS:
One hundred and sixty male SPF-grade SD rats were randomly divided into a blank group (10 rats), a sham-embedding group (50 rats), a catgut group (50 rats), and a PGLA group (50 rats). Each intervention group was further randomly divided into five subgroups according to the time points after intervention: 8 hours, 3 days, 7 days, 14 days, and 21 days, with 10 rats in each subgroup. One-time sham-embedding, catgut embedding and PGLA embedding was given at left "Zusanli" (ST 36) in each intervention group, respectively. The skin and subcutaneous connective tissue of the left "Zusanli" (ST 36) were collected at the corresponding time points after intervention, except for the blank group (only one day before intervention). Toluidine blue staining was used to detect MC count and degranulation, and immunohistochemical staining was used to detect the expression of SP and HA positive cells.
RESULTS:
There was no significant difference in MC count between the subgroups of each intervention group and the blank group (P>0.05). There was no significant difference in MC count between the subgroups of the catgut group and the PGLA group (P>0.05). The MC count in the 8-hour subgroup of PGLA group was higher than that in the 8-hour subgroup of catgut group (P<0.05), while the MC count in the 21-day subgroup of PGLA group was lower than that in the 21-day subgroup of catgut group (P<0.05). Compared with the blank group, the degranulation rates of MC were increased in the 8-hour and 3-day subgroups of sham-embedding group, 8-hour, 3-day, and 7-day subgroups of catgut group, and 8-hour, 3-day, 7-day, and 14-day subgroups of PGLA group (P<0.01, P<0.05, P<0.001). There was no significant difference in the degranulation rate of MC between the subgroups of the catgut group and the PGLA group (P>0.05), and no significant difference in the degranulation rate of MC between the two embedding groups at the same time point (P>0.05). Compared with the blank group, the expression of SP positive cells was increased in the 8-hour subgroup of sham-embedding group, 8-hour, 3-day, 7-day, and 14-day subgroups of catgut group, and 3-day, 7-day, and 14-day subgroups of PGLA group (P<0.001, P<0.05). The expression of SP positive cells in the 7-day subgroup of catgut group was higher than that in the 8-hour subgroup of catgut group (P<0.05), while the expression of SP positive cells in the 14-day subgroup of catgut group was lower than that in the 7-day subgroup of catgut group (P<0.001). The expression of SP positive cells in the 7-day subgroup of PGLA group was higher than that in the 3-day subgroup of PGLA group (P<0.05), while the expression of SP positive cells in the 14-day subgroup of PGLA group was lower than that in the 7-day subgroup of PGLA group (P<0.01). There was no significant difference in the expression of SP positive cells between the subgroups of the two embedding groups at the same time point (P>0.05). Compared with the blank group, the expression of HA positive cells was increased in the 8-hour, 3-day subgroups of sham-embedding group, 8-hour, 3-day, 7-day, and 14-day subgroups of catgut group, and 8-hour, 3-day, 7-day, 14-day, and 21-day subgroups of PGLA group (P<0.001, P<0.01, P<0.05). The expression of HA positive cells in the 14-day subgroup of catgut group was lower than that in the 7-day subgroup of catgut group (P<0.05), while the expression of HA positive cells in the 3-day subgroup of PGLA group was higher than that in the 8-hour subgroup of PGLA group (P<0.05), and the expression of HA positive cells in the 14-day subgroup of PGLA group was lower than that in the 7-day subgroup of PGLA group (P<0.05). The expression of HA positive cells in the 3-day subgroup of PGLA group was higher than that in the 3-day subgroup of catgut group (P<0.05).
CONCLUSION
Catgut and PGLA embedding at "Zusanli" (ST 36) in healthy rats could induce changes in local skin MC, SP, and HA, which may be one of the mechanisms of the temporal stimulation effect after acupoint embedding. There are certain differences between different suture materials. A moderate inflammatory response in the acupoint area, mediated by MC and involving SP and HA, may be one of the initiating factors for the effect of acupoint catgut embedding.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Mast Cells
;
Histamine
;
Substance P/genetics*
;
Catgut
;
Acupuncture Points
2.Research Status and Trend of Devices for Treating Advanced Heart Failure.
Guo-Hui JIAO ; Shao-Peng XU ; Jing-Jing MIAO ; Yu-Ji WANG ; Kun WU
Acta Academiae Medicinae Sinicae 2023;45(5):840-852
Heart failure (HF),a chronic progressive disease,is a global health problem and the leading cause of deaths in the global population.The pathophysiological abnormalities of HF mainly include abnormal cardiac structure (myocardium and valves),disturbance of electrophysiological activities,and weakened myocardial contractility.In addition to drug therapy and heart transplantation,interventional therapies can be employed for advanced-stage HF,including transcatheter interventions and mechanical circulatory assist devices.This article introduces the devices used for advanced HF that have been marketed or certified as innovative or breakthrough devices around the world and summarizes the research status and prospects the trend in this field.As diversified combinations of HF devices are used for the treatment of advanced HF,considerations regarding individualized HF therapy,risk-benefit evaluation on device design,medical insurance payment,post-market supervision system,and protection of intellectual property rights of high-end technology are needed,which will boost the development of the technology and industry and benefit the patients.
Humans
;
Heart-Assist Devices
;
Heart Failure/therapy*
;
Heart Transplantation
;
Myocardium
;
Chronic Disease
3.Mid-term effectiveness of hip preservation in the reconstruction of ultrashort bone segments in the proximal femur with three-dimensional printed customized cementless intercalary endoprosthesis with an intra-neck curved stem.
Hongtao SHENG ; Yuqi ZHANG ; Qi YOU ; Taojun GONG ; Zhuangzhuang LI ; Xuanhong HE ; Fan TANG ; Yong ZHOU ; Yitian WANG ; Minxun LU ; Yi LUO ; Li MIN ; Chongqi TU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):970-977
OBJECTIVE:
To explore the design points of a three-dimensional (3D) printed customized cementless intercalary endoprosthesis with an intra-neck curved stem and to evaluate the key points and mid-term effectiveness of its application in the reconstruction of ultrashort bone segments in the proximal femur.
METHODS:
Between October 2015 and January 2021, 17 patients underwent reconstruction with a 3D printed-customized cementless intercalary endoprosthesis with an intra-neck curved stem. There were 11 males and 6 females, the age ranged from 10 to 76 years, with an average of 30.1 years. There were 9 cases of osteosarcoma, 4 cases of Ewing sarcoma, 2 cases of chondrosarcoma, 1 case of liposarcoma, and 1 case of myofibroblastoma. The disease duration was 5-14 months, with an average of 9.5 months. Enneking staging included 16 cases of stage ⅡB and 1 case of stage ⅢB. The distances from the center of the femoral head to the body midline and the acetabular apex were measured preoperatively on X-ray images. Additionally, the distances from the tip of the intra-neck curved stem to the body midline and the acetabular apex were measured at immediate postoperatively and last follow-up. The neck-shaft angle was also measured preoperatively, at immediate postoperatively, and at last follow-up. The status of osseointegration at the bone-prosthesis interface and bone growth into the prosthesis surface were assessed by X-ray films, CT, and Tomosynthesis-Shimadzu metal artefact reduction technology (T-SMART). The survival status of the patients, presence of local recurrence or distant metastasis, and occurrence of postoperative complications were assessed. The recovery of lower limb function was evaluated pre- and post-operatively using the Musculoskeletal Tumor Society (MSTS) scoring system, and pain relief was evaluated using the visual analogue scale (VAS) scores.
RESULTS:
The patient's femoral resection length was (163.1±57.5) mm, the remaining proximal femoral length was (69.6±9.3) mm, and the percentage of femoral resection length/total femoral length was 38.7%±14.6%. All 17 patients were followed up 25-86 months with an average of 58.1 months. During the follow-up, 1 patient died of lung metastasis at 46 months postoperatively, and the remaining 16 patients survived tumor-free. There was no complication such as periprosthetic infection, delayed incision healing, aseptic loosening, prosthesis fracture, or periprosthetic fracture. No evidence of micromotion or wear around the implanted stem of the prosthesis was detected in X-ray and T-SMART evaluations. There was no significant radiolucent lines, and radiographic evidence of bone ingrowth into the bone-prosthesis interface was observed in all stems. There was no significant difference in the distance from the tip of the curved stem to the body midline and the apex of the acetabulum at immediate postoperatively and last follow-up compared with the distance from the center of the femoral head to the body midline and the apex of the acetabulum before operation, respectively (P>0.05), and there was no significant difference in the above indexes between immediate postoperatively and last follow-up (P>0.05). The differences in the neck-shaft angle at various time points before and after operation were also not significant (P>0.05). At last follow-up, the MSTS score was 26.1±1.2 and the VAS score was 0.1±0.5, which were significantly improved when compared with those before operation [19.4±2.1 and 5.7±1.0, respectively] (t=14.735, P<0.001; t=21.301, P<0.001). At last follow-up, none of the patients walked with the aid of crutches or other walkers.
CONCLUSION
The 3D printed customized cementless intercalary endoprosthesis with an intra-neck curved stem is an effective method for reconstructing ultrashort bone segments in the proximal femur following malignant tumor resection. The operation is reliable, the postoperative lower limb function is satisfactory, and the incidence of complications is low.
Female
;
Male
;
Humans
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Femur/surgery*
;
Lower Extremity
;
Bone-Implant Interface
;
Femur Head
;
Artificial Limbs
4.Targeted muscle reinnervation: a surgical technique of human-machine interface for intelligent prosthesis.
Yao GUO ; Wei ZHAO ; Jianping HUANG ; Mingkui SHEN ; Sijing LI ; Cheng LIU ; Xiuyun SU ; Guanglin LI ; Sheng BI ; Guoxian PEI
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):1021-1025
OBJECTIVE:
To review targeted muscle reinnervation (TMR) surgery for the construction of intelligent prosthetic human-machine interface, thus providing a new clinical intervention paradigm for the functional reconstruction of residual limbs in amputees.
METHODS:
Extensively consulted relevant literature domestically and abroad and systematically expounded the surgical requirements of intelligent prosthetics, TMR operation plan, target population, prognosis, as well as the development and future of TMR.
RESULTS:
TMR facilitates intuitive control of intelligent prostheses in amputees by reconstructing the "brain-spinal cord-peripheral nerve-skeletal muscle" neurotransmission pathway and increasing the surface electromyographic signals required for pattern recognition. TMR surgery for different purposes is suitable for different target populations.
CONCLUSION
TMR surgery has been certified abroad as a transformative technology for improving prosthetic manipulation, and is expected to become a new clinical paradigm for 2 million amputees in China.
Humans
;
Artificial Limbs
;
Muscle, Skeletal
;
Neurosurgical Procedures
;
Plastic Surgery Procedures
;
Prosthesis Implantation
5.Short-term efficacy of digitally-assisted traditional Chinese medicine manual reduction combined with 3D printed splint in the treatment of AO type-A distal radius fractures.
Guo-Liang LI ; Jian-Yong ZHAO ; Xiao-Ming LI ; Tie-Qiang WANG ; Kang CHEN ; Qi-Lin LIU
China Journal of Orthopaedics and Traumatology 2023;36(9):809-814
Objective To explore the short-term efficacy of digitally-assisted traditional Chinese medicine manual reduction combined with 3D printed splint in the treatment of AO type-A distal radius fractures, and explore the quantification of traditional Chinese medicine manual reduction and personalized improvement of splinting. Methods The clinical data of 50 patients with AO type-A distal radius fractures, who received treatment at the outpatient department of Cangzhou Integrated Traditional Chinese and Western Medicine Hospital in Hebei Province, were retrospective analyzed. The patient cohort included 22 females and 28 males, with ages ranging from 25 to 75 years old. Among them, 27 cases presented with distal radius fractures on the left side, and 24 cases on the right side. The patients were categorized into two groups: treatment group (n=25) and control group(n=25). There were 13 males and 12 females in the treatment group, with an average age of (56.2±5.5) years old. Treatment approach for this group involved several steps. Initially, Mimics Research software was used to conduct comprehensive analysis of complete CT data from the affected limb, resulting in the creation of a three-dimensional model. Subsequently, 3D models of the bones and skin contours, stored as STL format files, were imported into the Materialise Magics 23.0 software for model processing and repair. This facilitated the simulation of reduction and recording of displacement data, effectively generating a "digital prescription" to guide and quantify traditional Chinese medicine manipulation procedures. Finally, a personalized 3D printed splint was applied for fixation treatment. There were 15 males and 10 females in the control group, with an average age of (53.32±5.28) years old. These patients were treated with manualreduction combined with traditional splinting. The clinical efficacy of the two groups was assessed in terms of fracture reduction quality, fracture healing time, Gartland-Werley wrist joint score and X-ray parameters (palminclination angle, ulnar deviation angle, radius height) at 6 weeks post-operatively. Results The treatment group exhibited a shorter duration for achieving clinical healing compared to the control group (P<0.05). Six weeks post-operatively, the treatment group demonstrated higher wrist joint function scores, and a higher proportion of excellent and good outcomes than the control group(P<0.05). The treatment group was superior to the control group in terms of imaging parameters 6 weeks post-operatively (P<0.05). Conclusion By quantifying skin contours through digital simulation prescription reduction, a personalized 3D printed splint is developed to effectively stabilize fractures, enhancing localized fixation while ensuring greater adherence, stability, and comfort. This innovative approach offers personalized treatment for AO type-A distal radius fractures and presents a novel, precise treatment strategy for consideration.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
East Asian People
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Splints
;
Wrist Fractures/therapy*
;
Medicine, Chinese Traditional/methods*
;
Therapy, Computer-Assisted/methods*
;
Manipulation, Orthopedic/methods*
;
Tomography, X-Ray Computed
;
Precision Medicine/methods*
6.Analysis and Research on Comprehensive Evaluation Method of Operation Performance of Hospital Valuable Equipment.
Xiaomin REN ; Ronggao TANG ; Jie YANG
Chinese Journal of Medical Instrumentation 2023;47(5):587-590
OBJECTIVE:
To study the effective method of comprehensive evaluation and analysis of hospital valuable medical equipment performance.
METHODS:
The operation performance of 6 valuable equipment was evaluated by cost-benefit method, comprehensive index method and public evaluation method.
RESULTS:
Utilize equipment information management methods for data collection and evaluation, and construct an assessment data model based on evaluation indicators from three aspects: equipment operation status, profitability status, and scientific research contribution.
CONCLUSIONS
Through the performance analysis of different types of valuable medical equipment, a more real and comprehensive quantitative analysis is carried out, which plays a key role in the reasonable purchase, efficient operation and avoiding idling.
Equipment and Supplies, Hospital
;
Hospitals
;
Data Collection
;
Information Management
;
Surgical Equipment
7.Research on Cost Control and Rationalization Application Supervision of Medical Equipment Consumables Based on Analytic Hierarchy Process.
Weiwei SHI ; Ruiyao JIANG ; Yunxin ZHENG ; Zhiyong JI ; Bin LI
Chinese Journal of Medical Instrumentation 2023;47(6):702-705
OBJECTIVE:
To analyze the medical equipment operation data of 44 clinical departments in the hospital from three aspects: materials and consumables, operation and maintenance depreciation, and operation management.
METHODS:
To formulate the evaluation standards and scoring criteria for the operation indicators, the lowest score is 0 points, and the highest score is 5 points. Based on the operation indicators of medical equipment, establish a hierarchical structure model, determine the criterion layer and sub-criteria layer, construct a judgment matrix, normalize it, and calculate the weight coefficient.
RESULTS:
Count equipment operation data in 2021 and 2022. Score according to the assessment standards, assign weights through the analytic hierarchy process, calculate the total score and sort, and making a special analysis on the top 10 departments and departments with a score below 4 points, and formulate a rectification plan.
CONCLUSIONS
The establishment of index assessment standards and the weight distribution of AHP can effectively enhance the control of equipment operating costs.
Analytic Hierarchy Process
;
Rationalization
;
Surgical Equipment
;
Reference Standards
;
Cost Control
8.Surgical treatment of heart failure in China: towards the era of artificial heart.
Chinese Journal of Surgery 2023;61(3):177-180
The number of patients with heart failure in China is large, and the proportion of patients with end-stage heart failure continues to increase. The clinical effect of guideline-directed medications therapy for end-stage heart failure is poor. Heart transplantation is the most effective treatment for end-stage heart failure. But it is faced with many limitations such as the shortage of donors. In recent years, the research and development of artificial heart in China has made great progress. Three devices have been approved by the National Medical Products Administration for marketing, and another one is undergoing pre-marketing clinical trial. Since 2017, more than 200 cases of ventricular assist device implantation have been carried out in more than 34 hospitals in China. Among them, 70 patients in Fuwai Hospital, Chinese Academy of Medical Sciences had a 2-year survival rate of 90%. The first patient has survived more than 5 years with the device. More efforts should be put into the training of standardized technical team and quality control. Further research should be carried out in the aspects of pulsatile blood flow pump, fully implanted cable-free device, and improved biomaterial with better blood compatibility.
Humans
;
Heart-Assist Devices
;
Heart Failure/surgery*
;
Heart, Artificial
;
Heart Transplantation
;
Pulsatile Flow
9.A prospective study on the expansion rule of the directional skin and soft tissue expander in abdominal scar reconstruction.
Ji Dong XUE ; Yan LIANG ; Pei Peng XING ; Hai Ping DI ; Jian ZHANG ; Gao Yuan YANG ; Cheng De XIA
Chinese Journal of Burns 2023;39(2):150-157
Objective: To observe the expansion rule of directional skin and soft tissue expander (hereinafter referred to as expander) in abdominal scar reconstruction. Methods: A prospective self-controlled study was conducted. Twenty patients with abdominal scar who met the inclusion criteria and admitted to Zhengzhou First People's Hospital from January 2018 to December 2020 were selected by random number table method, including 5 males and 15 females, aged 12-51 (31±12) years, with 12 patients of type Ⅰ scar and 8 patients of type Ⅱ scar. In the first stage, two or three expanders with rated capacity of 300-600 mL were placed on both sides of the scar, of which at least one expander had rated capacity of 500 mL (as the follow-up observation object). After the sutures were removed, water injection treatment was started, with the expansion time of 4 to 6 months. After the water injection volume reached 2.0 times of the rated capacity of expander, abdominal scar excision+expander removal+local expanded flap transfer repair was performed in the second stage. The skin surface area at the expansion site was measured respectively when the water injection volume reached 1.0, 1.2, 1.5, 1.8, and 2.0 times of the rated capacity of expander, and the skin expansion rate of the expansion site at corresponding multiples of expansion (1.0, 1.2, 1.5, 1.8, and 2.0 times) and adjacent multiple intervals (1.0-1.2, 1.2-1.5, 1.5-1.8, and 1.8-2.0 times) were calculated. The skin surface area of the repaired site at 0 (immediately), 1, 2, 3, 4, 5, and 6 months after operation, and the skin shrinkage rate of the repaired site at different time points (1, 2, 3, 4, 5, and 6 months after operation) and different time periods (0-1, 1-2, 2-3, 3-4, 4-5, and 5-6 months after operation) were calculated. Data were statistically analyzed with analysis of variance for repeated measurement and least significant difference-t test. Results: Compared with the expansion of 1.0 time ((287.6±2.2) cm2 and (47.0±0.7)%), the skin surface area and expansion rate of the expansion site of patients ((315.8±2.1), (356.1±2.8), (384.9±1.6), and (386.2±1.5) cm2, (51.7±0.6)%, (57.2±0.6)%, (60.4±0.6)%, and (60.5±0.6)%) were significantly increased when the expansion reached 1.2, 1.5, 1.8, and 2.0 times (with t values of 46.04, 90.38, 150.14, 159.55, 45.11, 87.83, 135.82, and 118.48, respectively, P<0.05). Compared with the expansion of 1.2 times, the skin surface area and expansion rate of the expansion site of patients were significantly increased when the expansion reached 1.5, 1.8, and 2.0 times (with t values of 49.82, 109.64, 122.14, 144.19, 49.51, and 105.85, respectively, P<0.05). Compared with the expansion of 1.5 times, the skin surface area and expansion rate of the expansion site of patients were significantly increased when the expansion reached 1.8 times (with t values of 38.93 and 39.22, respectively, P<0.05) and 2.0 times (with t values of 38.37 and 38.78, respectively, P<0.05). Compared with the expansion of 1.8 times, the skin surface area and expansion rate of the expansion site of patients both had no statistically significant differences when the expansion reached 2.0 times (with t values of 4.71 and 4.72, respectively, P>0.05). Compared with the expansion of 1.0-1.2 times, the skin expansion rate of the expansion site of patient was significantly increased when the expansion reached 1.2-1.5 times (t=6.95, P<0.05), while the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.5-1.8 and 1.8-2.0 times (with t values of 5.89 and 40.75, respectively, P<0.05). Compared with the expansion of 1.2-1.5 times, the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.5-1.8 and 1.8-2.0 times (with t values of 10.50 and 41.92, respectively, P<0.05). Compared with the expansion of 1.5-1.8 times, the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.8-2.0 times (t=32.60, P<0.05). Compared with 0 month after operation, the skin surface area of the repaired site of patient at 1, 2, 3, 4, 5, and 6 months after operation was significantly decreased (with t values of 61.66, 82.70, 96.44, 102.81, 104.51, and 102.21, respectively, P<0.05). Compared with 1 month after operation, the skin surface area of the repaired site of patient was significantly decreased at 2, 3, 4, 5, and 6 months after operation (with t values of 37.37, 64.64, 69.40, 72.46, and 72.62, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 32.29, 50.00, 52.67, 54.76, and 54.62, respectively, P<0.05). Compared with 2 months after operation, the skin surface area of the repaired site of patient was significantly decreased at 3, 4, 5, and 6 months after operation (with t values of 52.41, 60.41, 70.30, and 65.32, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 52.97, 59.29, 69.68, and 64.50, respectively, P<0.05). Compared with 3 months after operation, the skin surface area of the repaired site of patient was significantly decreased at 4, 5, and 6 months after operation (with t values of 5.53, 38.00, and 38.52, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 25.36, 38.59, and 37.47, respectively, P<0.05). Compared with 4 months after operation, the skin surface area (with t values of 41.10 and 50.50, respectively, P>0.05) and skin shrinkage rate (with t values of 48.09 and 50.00, respectively, P>0.05) of the repaired site of patients at 5 and 6 months after operation showed no statistically significant differences. Compared with 5 months after operation, the skin surface area and skin shrinkage rate of the repaired site of patient at 6 months after operation showed no statistically significant differences (with t values of 9.40 and 9.59, respectively, P>0.05). Compared with 0-1 month after operation, the skin shrinkage rate of the repaired site of patient at 1-2, 2-3, 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 13.56, 40.00, 49.21, 53.97, and 57.68, respectively, P<0.05). Compared with 1-2 months after operation, the skin shrinkage rate of the repaired site of patients at 2-3, 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 12.37, 27.72, 30.16, and 31.67, respectively, P<0.05). Compared with 2-3 months after operation, the skin shrinkage rate of the repaired site of patients at 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 33.73, 41.31, and 54.10, respectively, P<0.05). Compared with 3-4 months after operation, the skin shrinkage rate of the repaired site of patient at 4-5 and 5-6 months after operation showed no statistically significant differences (with t values of 10.90 and 23.60, respectively, P>0.05). Compared with 4-5 months after operation, the skin shrinkage rate of the repaired site of patient at 5-6 months after operation showed no statistically significant difference (t=20.90, P>0.05). Conclusions: The expander can effectively expand the abdominal skin, thus repairing the abdominal scar deformity. Maintained expansion for one month after the water injection expansion reaches 1.8 times of the rated capacity of the expander can be set as a phase Ⅱ operation node.
Female
;
Male
;
Humans
;
Cicatrix/surgery*
;
Prospective Studies
;
Tissue Expansion Devices
;
Skin
;
Abdominal Wall
10.Three-dimensional finite element model construction and biomechanical analysis of customized titanium alloy lunate prosthesis.
Bin WANG ; Xingbo CAI ; Yue ZHANG ; Bihuan ZHANG ; Yongqing XU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(7):821-826
OBJECTIVE:
To design customized titanium alloy lunate prosthesis, construct three-dimensional finite element model of wrist joint before and after replacement by finite element analysis, and observe the biomechanical changes of wrist joint after replacement, providing biomechanical basis for clinical application of prosthesis.
METHODS:
One fresh frozen human forearm was collected, and the maximum range of motions in flexion, extension, ulnar deviation, and radialis deviation tested by cortex motion capture system were 48.42°, 38.04°, 35.68°, and 26.41°, respectively. The wrist joint data was obtained by CT scan and imported into Mimics21.0 software and Magics21.0 software to construct a wrist joint three-dimensional model and design customized titanium alloy lunate prosthesis. Then Geomagic Studio 2017 software and Solidworks 2017 software were used to construct the three-dimensional finite element models of a normal wrist joint (normal model) and a wrist joint with lunate prosthesis after replacement (replacement model). The stress distribution and deformation of the wrist joint before and after replacement were analyzed for flexion at and 15°, 30°, 48.42°, extension at 15°, 30°, and 38.04°, ulnar deviation at 10°, 20°, and 35.68°, and radial deviation at 5°, 15°, and 26.41° by the ANSYS 17.0 finite element analysis software. And the stress distribution of lunate bone and lunate prosthesis were also observed.
RESULTS:
The three-dimensional finite element models of wrist joint before and after replacement were successfully constructed. At different range of motion of flexion, extension, ulnar deviation, and radial deviation, there were some differences in the number of nodes and units in the grid models. In the four directions of flexion, extension, ulnar deviation, and radial deviation, the maximum deformation of wrist joint in normal model and replacement model occurred in the radial side, and the values increased gradually with the increase of the range of motion. The maximum stress of the wrist joint increased gradually with the increase of the range of motion, and at maximum range of motion, the stress was concentrated on the proximal radius, showing an overall trend of moving from the radial wrist to the proximal radius. The maximum stress of normal lunate bone increased gradually with the increase of range of motion in different directions, and the stress position also changed. The maximum stress of lunate prosthesis was concentrated on the ulnar side of the prosthesis, which increased gradually with the increase of the range of motion in flexion, and decreased gradually with the increase of the range of motion in extension, ulnar deviation, and radialis deviation. The stress on prosthesis increased significantly when compared with that on normal lunate bone.
CONCLUSION
The customized titanium alloy lunate prosthesis does not change the wrist joint load transfer mode, which provided data support for the clinical application of the prosthesis.
Humans
;
Lunate Bone/surgery*
;
Finite Element Analysis
;
Titanium
;
Wrist Joint/surgery*
;
Artificial Limbs
;
Range of Motion, Articular
;
Biomechanical Phenomena

Result Analysis
Print
Save
E-mail