1.Electrical stimulation based on triboelectric nanogenerator promotes osteogenesis of MC3T3-E1 cells on titanium surfaces.
Bo PANG ; Shu YANG ; Hongyang HAN ; Xingwei ZHANG ; Tao SONG
Journal of Biomedical Engineering 2025;42(2):366-373
This paper aims to explore the effect of electrical stimulation of triboelectric nanogenerators (TENGs) on the osteogenic and other biological behaviors of mouse embryonic osteoblast precursor cells (MC3T3-E1 cells) on titanium surfaces. First, an origami-type TENG was fabricated, and its electrical output performance was tested. The optimal current of the generator and the feasibility of the experiment were verified by the CCK-8 assay and scratch assay. At the optimal current, the osteogenic conditions of the cells in each group were determined by quantitative analysis of the total protein content, alkaline phosphatase (ALP) activity, and alizarin red staining (ARS) on the titanium surface. Finally, the adhesion and spreading of cells on the titanium surface after electrical stimulation were observed. The results showed that the TENG had good electrical output performance, with an open-circuit voltage of 65 V and a short-circuit current of 42 μA. Compared with the rest of the current, a current strength of 30 μA significantly improved cell proliferation and migration, osteogenesis, and adhesion and spreading capabilities. The above results confirm the safety and operability of TENG in biomedical applications, laying the foundation for future TENG applications in reducing the time of bone integration around titanium implants after surgery.
Titanium/chemistry*
;
Osteogenesis
;
Animals
;
Mice
;
Osteoblasts/cytology*
;
Electric Stimulation/instrumentation*
;
Cell Adhesion
;
Cell Proliferation
;
Surface Properties
;
Cell Differentiation
;
Nanotechnology
2.Research progress on enhancing osseointegration properties of polyetheretherketone implants through various modification methods.
Shilai LIU ; Xiaoke FENG ; Chunxia CHEN
Journal of Biomedical Engineering 2025;42(2):417-422
This review article summarizes the current modification methods employed to enhance the osseointegration properties of polyetheretherketone (PEEK), a novel biomaterial. Our analysis highlights that strategies such as surface treatment, surface modification, and the incorporation of bioactive composites can markedly improve the bioactivity of PEEK surfaces, thus facilitating their effective integration with bone tissue. However, to ensure widespread application of PEEK in the medical field, particularly in oral implantology, additional experiments and long-term clinical evaluations are required. Looking ahead, future research should concentrate on developing innovative modification techniques and assessment methodologies to further optimize the performance of PEEK implant materials. The ultimate goal is to provide the clinical setting with even more reliable solutions.
Benzophenones
;
Ketones/chemistry*
;
Polyethylene Glycols/chemistry*
;
Osseointegration
;
Humans
;
Polymers
;
Biocompatible Materials/chemistry*
;
Surface Properties
;
Prostheses and Implants
;
Dental Implants
3.Influence of two methods of smear layer removal on the surface properties of dentin.
Lingli ZHU ; Lin TANG ; Bowen LI ; Mei WANG ; Yuhua LIU
Journal of Peking University(Health Sciences) 2025;57(2):340-346
OBJECTIVE:
To explore the effects of two methods of smear layer removal on the surface properties of dentin.
METHODS:
Sixty extracted sound third molars were collected in this study, and were prepared as uniform dentin specimens with smear layer. All specimens were randomly divided into three groups: Control group, ultrasonic treatment (UT) group and etched treatment (ET) group. Scanning electron microscope (SEM) were used to observe the surface micromorphology of all three groups. Then, the surface elements, mineral phases and functional groups were analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and flourier transformed infrared spectrometer (FTIR) respectively. The mechanical properties, hydrophilicity and biocompatibility were also further evaluated.
RESULTS:
It was revealed that dentin tubules of UT and ET groups were exposed, but lots of dentin debris piled up on the surface of the control one which covered up dentin tubules on the surface. The EDX results should that the weaker peak value of calcium and phosphorus in ET group than control and UT groups. Characteristic peaks of hydroxyapatite could be seen by XRD in all of the three groups, but lower distinctive peaks of amide Ⅰ, Ⅱ and Ⅲ bands of collagen of the dentin surface in control group than in ET and UT groups. The microhardness results showed that ET group was lower than control and UT groups, the difference was significant (P < 0.05). Better hydrophilicity of ET group was investigated (P < 0.05) than control group and UT group. Cells could be observed to adhere normally to dentin surface of each group which meant that all of the three groups had good biocompatibility.
CONCLUSION
Both UT and ET could effectively remove the smear layer on the surface of dentin and had no adverse effect of the dentin micromorphology and biocompatibility. The ultrasonic removal of the smear layer did not influence the mineral structure, hydrophilicity and mechanical properties of dentin surface. Although ET can effectively improve the hydrophilicity of dentin but decreased mechanical properties and the content of calcium and phosphorus.
Dentin/ultrastructure*
;
Humans
;
Surface Properties
;
Smear Layer
;
Molar, Third
;
Microscopy, Electron, Scanning
;
Dental Etching/methods*
4.Advances in Surface Modification Techniques of Ureteral Stents.
Guanjun MA ; Hua XIE ; Chao ZHOU ; Guangtai ZHOU ; Haijun ZHANG
Chinese Journal of Medical Instrumentation 2025;49(4):406-414
The article introduces the formation process of bacterial infection and encrustation on the surface of ureteral stents, elaborates in detail on six surface modification methods for ureteral stents, namely impregnation, spraying, vapor deposition, chemical grafting, self-assembly, and electrospinning, then analyzes the advantages and limitations of each technique during application. Meanwhile, it introduces three commonly used materials for ureteral stents, namely polymers, metals, and biodegradable materials, and further explains the commonly used surface modification methods corresponding to different materials. Looking ahead, with the continuous strengthening of the multi-technology integration trend and the continuous advancement of new material research and development, it is expected that a more ideal ureteral stent can be developed.
Stents
;
Ureter
;
Surface Properties
;
Humans
5.Effects of cell area on single odontoblast polarization and differentiation via microarray technology.
Huen LI ; Nianzuo YU ; Xiheng LI ; Xiaoduo TANG ; Yalu SUN ; Chao SI ; Junhu ZHANG ; Bei CHANG
West China Journal of Stomatology 2025;43(2):183-189
OBJECTIVES:
This study aimed to explore the impact of cell spreading area on odontoblast polarization and differentiation using micropatterned surfaces ge-nerated by photolithography.
METHODS:
Micropatterned surfaces with differential adhesive properties were prepared using polyethylene glycol diacrylate (PEGDA)-ba-sed photolithography. Human dental pulp stem cells (hD-PSCs) were isolated into single cells and cultured on micropatterned surfaces with areas of 1 800, 2 700, and 3 600 μm2. Immunofluorescence staining was used to observe cell morphology and analyze the relocating of the golgi apparatus and nucleus. Alkaline phosphatase staining was preformed to examine odontogenic differentiation.
RESULTS:
The hDPSCs were successfully isolated and cultured on micropatterned surfaces mimicking the morphology of polarized odontoblasts. Phalloidin staining confirmed that the isolated hDPSCs successfully recapitulated the morphology of predesigned micropatterns. Immunofluorescence staining showed that the polarization and differentiation levels of the hDPSCs with a 3600 μm2 area were significantly higher than those with 1 800 and 2 700 μm2 areas (P<0.05).
CONCLUSIONS
The polarization and differentiation of single hDPSCs increased with the cell areas on micropatterned surfaces.
Cell Differentiation
;
Humans
;
Dental Pulp/cytology*
;
Odontoblasts/cytology*
;
Stem Cells/cytology*
;
Cells, Cultured
;
Cell Polarity
;
Surface Properties
6.In vitro osteogenic performance study of graphene oxide-coated titanium surfaces modified with dopamine or silane.
Qinglin WU ; Yingzhen LAI ; Yanling HUANG ; Zeyu XIE ; Yanyin LIN
West China Journal of Stomatology 2025;43(3):336-345
OBJECTIVES:
This study aimed to compare the osteogenic performance differences of titanium surface coatings modified by dopamine or silanized graphene oxide, and to provide a more suitable modification scheme for titanium surface graphene oxide coatings.
METHODS:
Titanium was subjected to alkali-heat treatment and then modified with dopamine and silanization, respectively, followed by coating with graphene oxide. Control and experimental groups were designed as follows: pure titanium (Ti) group; titanium after alkali-heat treatment (Ti-NaOH) group; titanium after alkali-heat treatment and silanization modification (Ti-APTES) group; titanium after alkali-heat treatment and dopamine modification (Ti-DOPA) group; titanium with silanization-modified surface decorated with graphene oxide (Ti-APTES/GO) group; titanium with dopamine-modified surface decorated with graphene oxide (Ti-DOPA/GO) group. The physical and chemical properties of the material surfaces were analyzed using scanning electron microscopy (SEM), contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and Raman spectrometer. The proliferation and adhesion morphology of mouse embryonic osteoblast precursor cells MC3T3-E1 on the material surfaces were observed by cell viability detection and immunofluorescence staining followed by laser confocal microscopy. The effects on the osteogenic differentiation of MC3T3-E1 cells were studied by alkaline phosphatase (ALP) staining, alizarin red staining and quantification, and real-time quantitative polymerase chain reaction.
RESULTS:
After modification with graphene oxide coating, a thin-film-like structure was observed on the surface under SEM. The hydrophilicity of all experimental groups was improved, among which the Ti-DOPA/GO group had the best hydrophilicity. XPS and Raman spectroscopy analysis showed that the modified materials exhibited typical D and G peaks, and XPS revealed the presence of a large number of oxygen-containing functional groups on the surface. CCK8 assay showed that all groups of materials had no cytotoxicity, and the proliferation level of the Ti-APTES/GO group was higher than that of the Ti-DOPA/GO group. Under the laser confocal microscope, the cells in the Ti-DOPA/GO and Ti-APTES/GO groups spread more fully. The Ti-DOPA/GO and Ti-APTES/GO groups had the deepest ALP staining, and the Ti-APTES/GO group had the most alizarin red-stained mineralized nodules and the highest quantitative result of alizarin red staining. In the Ti-DOPA/GO and Ti-APTES/GO groups, the expression of the early osteogenic-related gene RUNX2 reached a relatively high level, while in the expression of the late osteogenic-related genes OPN and OCN, the Ti-APTES/GO group performed better than the Ti-DOPA/GO group.
CONCLUSIONS
Ti-APTES/GO significantly outperformed Ti-DOPA/GO in promoting the adhesion, proliferation, and in vitro osteogenic differentiation of MC3T3-E1 cells.
Titanium/chemistry*
;
Graphite/chemistry*
;
Dopamine/chemistry*
;
Animals
;
Mice
;
Osteogenesis
;
Osteoblasts/cytology*
;
Surface Properties
;
Cell Proliferation
;
Silanes/chemistry*
;
Cell Adhesion
;
Coated Materials, Biocompatible/chemistry*
;
Cell Differentiation
;
Alkaline Phosphatase/metabolism*
;
Microscopy, Electron, Scanning
7.Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants.
Peng LIU ; Bo FAN ; Lei ZOU ; Lijun LÜ ; Qiuming GAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1300-1313
OBJECTIVE:
To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research.
METHODS:
The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances.
RESULTS:
At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity.
CONCLUSION
The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Anti-Bacterial Agents/pharmacology*
;
Coated Materials, Biocompatible/chemistry*
;
Metal-Organic Frameworks/pharmacology*
;
Osteogenesis
;
Surface Properties
;
Titanium/pharmacology*
;
Prostheses and Implants
8.Influence of antimicrobial peptide biofunctionalized TiO2 nanotubes on the biological behavior of human keratinocytes and its antibacterial effect.
Yi LI ; Jin Jin WANG ; Yi De HE ; Min XU ; Xin Yan LI ; Bo Ya XU ; Yu Mei ZHANG
Chinese Journal of Stomatology 2023;58(2):165-173
Objective: To fabricate TiO2 nanotube material functionalized by antimicrobial peptide LL-37, and to explore its effects on biological behaviors such as adhesion and migration of human keratinocytes (HaCaT) and its antibacterial properties. Methods: The TiO2 nanotube array (NT) was constructed on the surface of polished titanium (PT) by anodization, and the antimicrobial peptide LL-37 was loaded on the surface of TiO2 nanotube (LL-37/NT) by physical adsorption. Three samples were selected by simple random sampling in each group. Surface morphology, roughness, hydrophilicity and release characteristics of LL-37 of the samples were analyzed with a field emission scanning electron microscope, an atomic force microscope, a contact angle measuring device and a microplate absorbance reader. HaCaT cells were respectively cultured on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of cell was observed by field emission scanning electron microscope. The number of cell adhesion was observed by cellular immunofluorescence staining. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Wound scratch assay was used to observe the migration of HaCaT. The above experiments were used to evaluate the effect of each group on the biological behavior of HaCaT cells. To evaluate their antibacterial effects, Porphyromonas gingivalis (Pg) was respectively inoculated on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of bacteria was observed by field emission scanning electron microscope. Bacterial viability was determined by live/dead bacterial staining. Results: A uniform array of nanotubes could be seen on the surface of titanium samples in LL-37/NT group, and the top of the tube was covered with granular LL-37. Compared with PT group [the roughness was (2.30±0.18) nm, the contact angle was 71.8°±1.7°], the roughness [(20.40±3.10) and (19.10±4.11) nm] and hydrophilicity (the contact angles were 22.4°±3.1° and 25.3°±2.2°, respectively) of titanium samples increased in NT and LL-37/NT group (P<0.001). The results of in vitro release test showed that the release of antimicrobial peptide LL-37 was characterized by early sudden release (1-4 h) and long-term (1-7 d) slow release. With the immunofluorescence, more cell attachment was found on NT and LL-37/NT than that on PT at the first 0.5 and 2.0 h of culture (P<0.05). The results of CCK-8 showed that there was no significant difference in the proliferation of cells among groups at 1, 3 and 5 days after culture. Wound scratch assay showed that compared with PT and NT group, the cell moved fastest on the surface of titanium samples in LL-37/NT group at 24 h of culture [(96.4±4.9)%] (F=35.55, P<0.001). A monolayer cells could be formed and filled with the scratch in 24 h at LL-37/NT group. The results of bacterial test in vitro showed that compared with the PT group, the bacterial morphology in the NT and LL-37/NT groups was significantly wrinkled, and obvious bacterial rupture could be seen on the surface of titanium samples in LL-37/NT group. The results of bacteria staining showed that the green fluorescence intensity of titanium samples in LL-37/NT group was the lowest in all groups (F=66.54,P<0.001). Conclusions: LL-37/NT is beneficial to the adhesion and migration of HaCaT cells and has excellent antibacterial properties, this provides a new strategy for the optimal design of implant neck materials.
Humans
;
Titanium/chemistry*
;
Antimicrobial Peptides
;
Cathelicidins
;
Sincalide
;
Anti-Bacterial Agents/pharmacology*
;
Nanotubes/chemistry*
;
Dental Materials
;
Bacteria
;
Keratinocytes
;
Surface Properties
9.Research on friction and wear behaviors of silicon-lithium spray coating on zirconia ceramics.
Wei Wei LI ; Hu CHEN ; Yong WANG ; Yu Chun SUN
Journal of Peking University(Health Sciences) 2023;55(1):94-100
OBJECTIVE:
To study microstructure, friction and wear behaviors of silicon-lithium spray coating on the surface of zirconia ceramics and to preliminarily evaluate its esthetic so as to provide support and guidance for the clinical application.
METHODS:
Zirconia ceramic specimens were randomly divided into three groups: coating group (two subgroups), polishing group (two subgroups), and glazing group (four subgroups), with 10 samples in each subgroup. The two subgroups of coating group were the zirconia ceramics with the untreated and preliminary polishing surfaces sprayed with silicon-lithium coating, respectively. The two subgroups of polishing group were preliminary polishing and fine polishing of zirconia ceramics, respectively. The four subgroups of glazing group were preliminarily polished zirconia ceramics glazed with Biomic and Stain/Glaze products, respectively; and untreated zirconia ceramics glazed with Biomic and Stain/Glaze products, respectively. The above 8 subgroups of zirconia ceramic specimens were used as friction pairs with 80 steatite ceramics for 50 000 chewing cycles under 50 N vertical load and artificial saliva lubrication using chewing simulation. Scanning electron microscope was used to observe the microstructure of the surface and section of the coating group, and the thickness of the coating and glazing were measured. The linear roughness of the coating and polishing groups was mea-sured using a laser confocal scanning microscope. Vickers hardness was measured using a microhardness tester and the esthetic of zirconia ceramic full crown sprayed with silicon-lithium coating was preliminarily evaluated. White light interferometer was used to measure the width, the maximum depth and the volume of the wear scars of each group, and the wear depth of steatite ceramics and wear rate of zirconia ceramic specimens were calculated. Kruskal-Wallis nonparametric test and Dunn's multiple comparisons test were used to analyze the wear depth of each group (α=0.05).
RESULTS:
The microstructures of the silica-lithium spray coatings on the untreated and preliminarily polished zirconia ceramic surfaces showed the protruding defects, and the line roughness of coating group was larger than that of the polishing group. The median thickness of the silica-lithium spray coating on the preliminarily polished zirconia ceramic was 13.0 μm (interquartile range, IQR: 11.6, 17.9), while that of the silica-lithium spray coating on the untreated zirconia ceramic was 4.4 μm (IQR: 4.1, 4.7). The Vickers hardness and wear rate of the coating group were between the polishing group and the glazing group. The wear depths of the wear scars of steatite ceramics were the glazing group, coating group, and polishing group in descending order, and there was statistically significant difference between glazing and polishing groups (P < 0.05). With the increase of polishing procedure, the wear depth of steatite ceramics decreased in each subgroups. The orders of maximum depth and volume of wear scars of zirconia ceramic were the glazing group, coating group, and polishing group in descending order, and there was statistically significant difference in the maximum depth of wear scars between glazing and polishing groups (P < 0.05).
CONCLUSION
The silica-lithium spray coating on the zirconia ceramic, can be used as a new method for zirconia ceramic surface treatment, because it can increase the esthetic of zirconia ceramics compared with polishing and reduce the wear of steatite ceramics compared with glazing.
Humans
;
Silicon
;
Materials Testing
;
Friction
;
Lithium
;
Cicatrix
;
Surface Properties
;
Silicon Dioxide
;
Zirconium/chemistry*
;
Ceramics
;
Dental Porcelain
10.Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions.
Karan GULATI ; Chengye DING ; Tianqi GUO ; Houzuo GUO ; Huajie YU ; Yan LIU
International Journal of Oral Science 2023;15(1):15-15
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.
Humans
;
Titanium
;
Dental Implants
;
Wound Healing
;
Surface Properties

Result Analysis
Print
Save
E-mail