1.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*
2.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
3.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
4.Total triterpenes of Euphorbium alleviates rheumatoid arthritis via Nrf2/HO-1/GPX4 pathway.
Mao-Jie ZHOU ; Wei TAN ; Ha-Mu-la-Ti HASIMU ; Lei XU ; Zheng-Yi GU ; Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(18):4834-4842
This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Triterpenes/pharmacology*
;
Oxidative Stress
;
Arthritis, Rheumatoid/genetics*
;
Glutathione
;
Superoxide Dismutase/metabolism*
;
Glycosides/pharmacology*
;
RNA, Messenger/metabolism*
5.Guiqi Yiyuan Ointment protects rat left lung from bystander effect of right lung injury induced by ~(12)C~(6+) beam.
Tian-Xing MA ; Jin-Tian LI ; Juan LI ; Yi ZHANG ; Jian-Qing LIANG
China Journal of Chinese Materia Medica 2023;48(24):6740-6748
This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.
Rats
;
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
NF-kappa B/metabolism*
;
Inflammasomes/metabolism*
;
Lung Injury/genetics*
;
Reactive Oxygen Species/metabolism*
;
Bystander Effect
;
Ointments
;
Rats, Wistar
;
Lung/metabolism*
;
Caspase 1/metabolism*
;
RNA, Messenger
;
Superoxide Dismutase
6.Ginsenoside-Rg1 combined with a conditioned medium from induced neuron-like hUCMSCs alleviated the apoptosis in a cell model of ALS through regulating the NF-κB/Bcl-2 pathway.
Yu HUANG ; Huili YANG ; Biying YANG ; Yu ZHENG ; Xiaomei HOU ; Guiling CHEN ; Wenqi ZHANG ; Xiang ZENG ; Baoxin DU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):540-550
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).
Humans
;
NF-kappa B/metabolism*
;
Ginsenosides/pharmacology*
;
Amyotrophic Lateral Sclerosis/genetics*
;
Culture Media, Conditioned/pharmacology*
;
Superoxide Dismutase-1
;
Neurodegenerative Diseases
;
Neurons/metabolism*
;
Apoptosis
7.Expression, purification, and characterization of cell-permeable fusion antioxidant enzyme sensitive to matrix metalloproteinases-2/9.
Huocong HE ; Lixiang LIN ; Lingling LI ; Lunqiao WU ; Haiying LIN ; Jianru PAN
Chinese Journal of Biotechnology 2022;38(9):3515-3527
Antioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments. Therefore, a fusion protein containing an MMP-2/9 cleavable substrate peptide X, a cell-penetrating peptide R9, a glutathione S-transferase (GST), and a human Cu, Zn superoxide dismutase (SOD1), was designed and named GST-SOD1-X-R9. In the tumor microenvironment, GST-SOD1-X-R9 would lose its cell-penetrating peptide and could not enter tumor cells due to the cleavage of substrate X by active MMP-2/9, thereby achieving selected entering normal cells. The complete nucleotide sequence of SOD1-X-R9 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1. The pGEX4T-1-SOD1-X-R9 recombinant plasmid was obtained, and soluble expression of the fusion protein was achieved. GST-SOD1-X-R9 was purified by ammonium sulfate precipitation and GST affinity chromatography. The molecular weight of the fusion protein was approximately 47 kDa, consistent with the theoretical value. The SOD and GST activities were 2 954 U/mg and 328 U/mg, respectively. Stability test suggested that almost no change in either SOD activity or GST activity of GST-SOD1-X-R9 was observed under physiological conditions. The fusion protein could be partially digested by collagenase Ⅳ in solution. Subsequently, the effect of MMP-2/9 activity on transmembrane ability of the fusion protein was tested using 2D and 3D cultured HepG2 cells. Little extracellular MMP-2 activity of HepG2 cells was observed under 2D culture condition. While under the 3D culture model, the size and the MMP-2 activity of the HepG2 tumor spheroid increased daily. GST-SOD1-R9 proteins showed the same transmembrane efficiency in 2D cultured HepG2 cells, but the transmembrane efficiency of GST-SOD1-X-R9 in 3D cultured HepG2 spheres was reduced remarkably. This study provided a basis for further investigating the selectively protective effect of GST-SOD1-X-R9 against oxidative damage in normal cells.
Ammonium Sulfate
;
Antioxidants
;
Cell-Penetrating Peptides/pharmacology*
;
Endopeptidases
;
Glutathione Transferase/metabolism*
;
Humans
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Recombinant Fusion Proteins
;
Recombinant Proteins
;
Superoxide Dismutase/metabolism*
;
Superoxide Dismutase-1
8.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
9.Visual-spatial neglect after right-hemisphere stroke: behavioral and electrophysiological evidence.
Lin-Lin YE ; Lei CAO ; Huan-Xin XIE ; Gui-Xiang SHAN ; Yan-Ming ZHANG ; Wei-Qun SONG
Chinese Medical Journal 2019;132(9):1063-1070
BACKGROUND:
Visual-spatial neglect (VSN) is a neuropsychological syndrome, and right-hemisphere stroke is the most common cause. The pathogenetic mechanism of VSN remains unclear. This study aimed to investigate the behavioral and event-related potential (ERP) changes in patients with or without VSN after right-hemisphere stroke.
METHODS:
Eleven patients with VSN with right-hemisphere stroke (VSN group) and 11 patients with non-VSN with right-hemisphere stroke (non-VSN group) were recruited along with one control group of 11 age- and gender-matched healthy participants. The visual-spatial function was evaluated using behavioral tests, and ERP examinations were performed.
RESULTS:
The response times in the VSN and non-VSN groups were both prolonged compared with those of normal controls (P < 0.001). In response to either valid or invalid cues in the left side, the accuracy in the VSN group was lower than that in the non-VSN group (P < 0.001), and the accuracy in the non-VSN group was lower than that in controls (P < 0.05). The P1 latency in the VSN group was significantly longer than that in the control group (F[2, 30] = 5.494, P = 0.009), and the N1 amplitude in the VSN group was significantly lower than that in the control group (F[2, 30] = 4.343, P = 0.022). When responding to right targets, the left-hemisphere P300 amplitude in the VSN group was significantly lower than that in the control group (F[2, 30] = 4.255, P = 0.025). With either left or right stimuli, the bilateral-hemisphere P300 latencies in the VSN and non-VSN groups were both significantly prolonged (all P < 0.05), while the P300 latency did not differ significantly between the VSN and non-VSN groups (all P > 0.05).
CONCLUSIONS
Visual-spatial attention function is impaired after right-hemisphere stroke, and clinicians should be aware of the subclinical VSN. Our findings provide neuroelectrophysiological evidence for the lateralization of VSN.
Adult
;
Aged
;
Cerebral Infarction
;
physiopathology
;
Electrophysiology
;
Female
;
Humans
;
Male
;
Middle Aged
;
Neuropsychological Tests
;
Nitric Oxide Synthase Type III
;
genetics
;
PPAR gamma
;
genetics
;
Perceptual Disorders
;
genetics
;
metabolism
;
physiopathology
;
Polymorphism, Genetic
;
genetics
;
Reaction Time
;
genetics
;
physiology
;
Reactive Oxygen Species
;
metabolism
;
Stroke
;
genetics
;
metabolism
;
physiopathology
;
Superoxide Dismutase
;
genetics
10.The effects of Sestrin2 on apoptosis of heat-exposed lung epithelial cells and its mechanism.
Xiu-Jie GAO ; Shang WANG ; Wei-Li LIU ; Kun WANG ; Zhao-Li CHEN ; Xin-Xing WANG
Chinese Journal of Applied Physiology 2019;35(4):289-292
OBJECTIVE:
To investigate the protective effects of Sestrin2 protein on lung epithelial Beas-2B cells in the heat-exposure environment and its mechanism.
METHODS:
Lung epithelial Beas-2B cells were cultured at 37℃, 39℃, 40℃ and 41℃ respectively. Cells were harvested at different times (0, 3, 6 and 12 h) after pancreatin digestion. The expressions of Sestrin2, superoxide dismutase(SOD), reactive oxygen species(ROS), cell mitochondrial membrane potential and apoptosis rate of cells were detected by Western blot, fluorescence spectrophotometer and flow cytometry, respectively. Gene expression sequence was cloned into high expression plasmid pcDNA3.1. Beas-2B cells were transfected by Lipfectamine 2000 to construct Sestrin2 and SOD high expression cells. The changes of mitochondrial membrane potential and cell apoptosis were observed in the Sestrin2 and SOD high expression cells.
RESULTS:
With the increase of temperature, the expression level of Sestrin2 protein in heat treatment group was decreased compared with the control group. When Beas-2B cells were exposed to 41℃, the ROS level was increased, mitochondrial membrane potential was decreased significantly and apoptosis rate was increased at different time points. After high expression of Sestrin2 and SOD in the Beas-2B cells, the expression level of ROS was decreased and the change tendency of mitochondrial membrane potential was decreased, and the apoptosis rate was reduced at 41℃ exposure.
CONCLUSION
Sestrin2 can alleviate the apoptosis of lung epithelial cells induced by heat exposure through mitochondrial membrane potential and SOD, which has protective effect on lung epithelial Beas-2B cells.
Apoptosis
;
Cell Line
;
Epithelial Cells
;
pathology
;
Hot Temperature
;
Humans
;
Membrane Potential, Mitochondrial
;
Nuclear Proteins
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Transfection

Result Analysis
Print
Save
E-mail