1.Roles of PDGF/PDGFR signaling in various organs
Sung-Cherl JUNG ; Dawon KANG ; Eun-A KO
The Korean Journal of Physiology and Pharmacology 2025;29(2):139-155
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
2.Roles of PDGF/PDGFR signaling in various organs
Sung-Cherl JUNG ; Dawon KANG ; Eun-A KO
The Korean Journal of Physiology and Pharmacology 2025;29(2):139-155
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
3.Transcriptomic Alteration in the Brain and Gut of Offspring Following Prenatal Exposure to Corticosterone
Eun-A KO ; Tong ZHOU ; Jae-Hong KO ; Sung-Cherl JUNG
Experimental Neurobiology 2025;34(1):9-19
Maternal stress during pregnancy can profoundly affect offspring health, increasing the risk of psychiatric disorders, metabolic diseases, and gastrointestinal problems. In this study, the effects of high prenatal corticosterone exposure on gene expression in the brain and small intestine of rat offspring were investigated via RNA-sequencing analysis. Pregnant rats were divided into two groups: Corti.Moms were injected with corticosterone daily, while Nor.Moms were given saline injections. Their offspring were labeled as Corti.Pups and Nor.Pups, respectively. The brain tissue analysis of Corti.Pups showed that the expression levels of the genes linked to neurodegenerative conditions increased and enhanced mitochondrial biogenesis, possibly due to higher ATP demands. The genes associated with calcium signaling pathways, neuroactive ligand-receptor interactions, and IgA production were also upregulated in the small intestine of Corti.pups. Conversely, the genes related to protein digestion, absorption, and serotonergic and dopaminergic synaptic activities were downregulated. These findings revealed that gene expression patterns in both the brain and intestinal smooth muscle of offspring prenatally exposed to corticosterone were substantially altered. Thus, this study provided valuable insights into the effects of prenatal stress on neurodevelopment and gut function.
4.Roles of PDGF/PDGFR signaling in various organs
Sung-Cherl JUNG ; Dawon KANG ; Eun-A KO
The Korean Journal of Physiology and Pharmacology 2025;29(2):139-155
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
5.Roles of PDGF/PDGFR signaling in various organs
Sung-Cherl JUNG ; Dawon KANG ; Eun-A KO
The Korean Journal of Physiology and Pharmacology 2025;29(2):139-155
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
6.Transcriptomic Alteration in the Brain and Gut of Offspring Following Prenatal Exposure to Corticosterone
Eun-A KO ; Tong ZHOU ; Jae-Hong KO ; Sung-Cherl JUNG
Experimental Neurobiology 2025;34(1):9-19
Maternal stress during pregnancy can profoundly affect offspring health, increasing the risk of psychiatric disorders, metabolic diseases, and gastrointestinal problems. In this study, the effects of high prenatal corticosterone exposure on gene expression in the brain and small intestine of rat offspring were investigated via RNA-sequencing analysis. Pregnant rats were divided into two groups: Corti.Moms were injected with corticosterone daily, while Nor.Moms were given saline injections. Their offspring were labeled as Corti.Pups and Nor.Pups, respectively. The brain tissue analysis of Corti.Pups showed that the expression levels of the genes linked to neurodegenerative conditions increased and enhanced mitochondrial biogenesis, possibly due to higher ATP demands. The genes associated with calcium signaling pathways, neuroactive ligand-receptor interactions, and IgA production were also upregulated in the small intestine of Corti.pups. Conversely, the genes related to protein digestion, absorption, and serotonergic and dopaminergic synaptic activities were downregulated. These findings revealed that gene expression patterns in both the brain and intestinal smooth muscle of offspring prenatally exposed to corticosterone were substantially altered. Thus, this study provided valuable insights into the effects of prenatal stress on neurodevelopment and gut function.
7.Transcriptomic Alteration in the Brain and Gut of Offspring Following Prenatal Exposure to Corticosterone
Eun-A KO ; Tong ZHOU ; Jae-Hong KO ; Sung-Cherl JUNG
Experimental Neurobiology 2025;34(1):9-19
Maternal stress during pregnancy can profoundly affect offspring health, increasing the risk of psychiatric disorders, metabolic diseases, and gastrointestinal problems. In this study, the effects of high prenatal corticosterone exposure on gene expression in the brain and small intestine of rat offspring were investigated via RNA-sequencing analysis. Pregnant rats were divided into two groups: Corti.Moms were injected with corticosterone daily, while Nor.Moms were given saline injections. Their offspring were labeled as Corti.Pups and Nor.Pups, respectively. The brain tissue analysis of Corti.Pups showed that the expression levels of the genes linked to neurodegenerative conditions increased and enhanced mitochondrial biogenesis, possibly due to higher ATP demands. The genes associated with calcium signaling pathways, neuroactive ligand-receptor interactions, and IgA production were also upregulated in the small intestine of Corti.pups. Conversely, the genes related to protein digestion, absorption, and serotonergic and dopaminergic synaptic activities were downregulated. These findings revealed that gene expression patterns in both the brain and intestinal smooth muscle of offspring prenatally exposed to corticosterone were substantially altered. Thus, this study provided valuable insights into the effects of prenatal stress on neurodevelopment and gut function.
8.Transcriptomic Alteration in the Brain and Gut of Offspring Following Prenatal Exposure to Corticosterone
Eun-A KO ; Tong ZHOU ; Jae-Hong KO ; Sung-Cherl JUNG
Experimental Neurobiology 2025;34(1):9-19
Maternal stress during pregnancy can profoundly affect offspring health, increasing the risk of psychiatric disorders, metabolic diseases, and gastrointestinal problems. In this study, the effects of high prenatal corticosterone exposure on gene expression in the brain and small intestine of rat offspring were investigated via RNA-sequencing analysis. Pregnant rats were divided into two groups: Corti.Moms were injected with corticosterone daily, while Nor.Moms were given saline injections. Their offspring were labeled as Corti.Pups and Nor.Pups, respectively. The brain tissue analysis of Corti.Pups showed that the expression levels of the genes linked to neurodegenerative conditions increased and enhanced mitochondrial biogenesis, possibly due to higher ATP demands. The genes associated with calcium signaling pathways, neuroactive ligand-receptor interactions, and IgA production were also upregulated in the small intestine of Corti.pups. Conversely, the genes related to protein digestion, absorption, and serotonergic and dopaminergic synaptic activities were downregulated. These findings revealed that gene expression patterns in both the brain and intestinal smooth muscle of offspring prenatally exposed to corticosterone were substantially altered. Thus, this study provided valuable insights into the effects of prenatal stress on neurodevelopment and gut function.
9.Roles of PDGF/PDGFR signaling in various organs
Sung-Cherl JUNG ; Dawon KANG ; Eun-A KO
The Korean Journal of Physiology and Pharmacology 2025;29(2):139-155
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
10.Corrigendum to: Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart
Jehee JANG ; Ki-Woon KANG ; Young-Won KIM ; Seohyun JEONG ; Jaeyoon PARK ; Jihoon PARK ; Jisung MOON ; Junghyun JANG ; Seohyeon KIM ; Sunghun KIM ; Sungjoo CHO ; Yurim LEE ; Hyoung Kyu KIM ; Jin HAN ; Eun-A KO ; Sung-Cherl JUNG ; Jung-Ha KIM ; Jae-Hong KO
The Korean Journal of Physiology and Pharmacology 2024;28(4):391-391

Result Analysis
Print
Save
E-mail