1.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
2.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
3.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
4.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
5.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
6.Evaluating the TaqMan Jra -Genotyping Method for Rapidly Predicting the Presence of Anti-Jra Antibodies
Yu-Kyung KOO ; Soon Sung KWON ; Eun Jung SUH ; Na Hyeong KIM ; Hyun Kyung KIM ; Youn Keong CHO ; Seung Jun CHOI ; Sinyoung KIM ; Kyung-A LEE
Annals of Laboratory Medicine 2024;44(5):418-425
Background:
The Jr a antigen is a high-prevalence red blood cell (RBC) antigen. Reports on cases of fatal hemolytic disease of the fetus and newborn and acute hemolytic transfusion reactions suggest that antibodies against Jr a (anti-Jra ) have potential clinical significance.Identifying anti-Jra is challenging owing to a lack of commercially available antisera. We developed an alternative approach to rapidly predict the presence of anti-Jra using the TaqMan single-nucleotide polymorphism (SNP)-genotyping method.
Methods:
Residual peripheral blood samples from 10 patients suspected of having the anti-Jr a were collected. Two samples with confirmed Jr(a–) RBCs and anti-Jra were used to validate the TaqMan genotyping assay by comparing the genotyping results with direct sequencing. The accuracy of the assay in predicting the presence of anti-Jra was verified through crossmatching with in-house Jr(a–) O+ RBCs.
Results:
The TaqMan-genotyping method was validated with two Jr(a–) RBC- and anti-Jra -confirmed samples that showed concordant Jr a genotyping and direct sequencing results.Jra genotyping for the remaining samples and crossmatching the serum samples with inhouse Jr(a–) O+ RBCs showed consistent results.
Conclusions
We validated a rapid, simple, accurate, and cost-effective method for predicting the presence of anti-Jra using a TaqMan-based SNP-genotyping assay. Implementing this method in routine practice in clinical laboratories will assist in solving difficult problems regarding alloantibodies to high-prevalence RBC antigens and ultimately aid in providing safe and timely transfusions and proper patient care.
7.Evaluating the TaqMan Jra -Genotyping Method for Rapidly Predicting the Presence of Anti-Jra Antibodies
Yu-Kyung KOO ; Soon Sung KWON ; Eun Jung SUH ; Na Hyeong KIM ; Hyun Kyung KIM ; Youn Keong CHO ; Seung Jun CHOI ; Sinyoung KIM ; Kyung-A LEE
Annals of Laboratory Medicine 2024;44(5):418-425
Background:
The Jr a antigen is a high-prevalence red blood cell (RBC) antigen. Reports on cases of fatal hemolytic disease of the fetus and newborn and acute hemolytic transfusion reactions suggest that antibodies against Jr a (anti-Jra ) have potential clinical significance.Identifying anti-Jra is challenging owing to a lack of commercially available antisera. We developed an alternative approach to rapidly predict the presence of anti-Jra using the TaqMan single-nucleotide polymorphism (SNP)-genotyping method.
Methods:
Residual peripheral blood samples from 10 patients suspected of having the anti-Jr a were collected. Two samples with confirmed Jr(a–) RBCs and anti-Jra were used to validate the TaqMan genotyping assay by comparing the genotyping results with direct sequencing. The accuracy of the assay in predicting the presence of anti-Jra was verified through crossmatching with in-house Jr(a–) O+ RBCs.
Results:
The TaqMan-genotyping method was validated with two Jr(a–) RBC- and anti-Jra -confirmed samples that showed concordant Jr a genotyping and direct sequencing results.Jra genotyping for the remaining samples and crossmatching the serum samples with inhouse Jr(a–) O+ RBCs showed consistent results.
Conclusions
We validated a rapid, simple, accurate, and cost-effective method for predicting the presence of anti-Jra using a TaqMan-based SNP-genotyping assay. Implementing this method in routine practice in clinical laboratories will assist in solving difficult problems regarding alloantibodies to high-prevalence RBC antigens and ultimately aid in providing safe and timely transfusions and proper patient care.
8.Evaluating the TaqMan Jra -Genotyping Method for Rapidly Predicting the Presence of Anti-Jra Antibodies
Yu-Kyung KOO ; Soon Sung KWON ; Eun Jung SUH ; Na Hyeong KIM ; Hyun Kyung KIM ; Youn Keong CHO ; Seung Jun CHOI ; Sinyoung KIM ; Kyung-A LEE
Annals of Laboratory Medicine 2024;44(5):418-425
Background:
The Jr a antigen is a high-prevalence red blood cell (RBC) antigen. Reports on cases of fatal hemolytic disease of the fetus and newborn and acute hemolytic transfusion reactions suggest that antibodies against Jr a (anti-Jra ) have potential clinical significance.Identifying anti-Jra is challenging owing to a lack of commercially available antisera. We developed an alternative approach to rapidly predict the presence of anti-Jra using the TaqMan single-nucleotide polymorphism (SNP)-genotyping method.
Methods:
Residual peripheral blood samples from 10 patients suspected of having the anti-Jr a were collected. Two samples with confirmed Jr(a–) RBCs and anti-Jra were used to validate the TaqMan genotyping assay by comparing the genotyping results with direct sequencing. The accuracy of the assay in predicting the presence of anti-Jra was verified through crossmatching with in-house Jr(a–) O+ RBCs.
Results:
The TaqMan-genotyping method was validated with two Jr(a–) RBC- and anti-Jra -confirmed samples that showed concordant Jr a genotyping and direct sequencing results.Jra genotyping for the remaining samples and crossmatching the serum samples with inhouse Jr(a–) O+ RBCs showed consistent results.
Conclusions
We validated a rapid, simple, accurate, and cost-effective method for predicting the presence of anti-Jra using a TaqMan-based SNP-genotyping assay. Implementing this method in routine practice in clinical laboratories will assist in solving difficult problems regarding alloantibodies to high-prevalence RBC antigens and ultimately aid in providing safe and timely transfusions and proper patient care.
9.Evaluating the TaqMan Jra -Genotyping Method for Rapidly Predicting the Presence of Anti-Jra Antibodies
Yu-Kyung KOO ; Soon Sung KWON ; Eun Jung SUH ; Na Hyeong KIM ; Hyun Kyung KIM ; Youn Keong CHO ; Seung Jun CHOI ; Sinyoung KIM ; Kyung-A LEE
Annals of Laboratory Medicine 2024;44(5):418-425
Background:
The Jr a antigen is a high-prevalence red blood cell (RBC) antigen. Reports on cases of fatal hemolytic disease of the fetus and newborn and acute hemolytic transfusion reactions suggest that antibodies against Jr a (anti-Jra ) have potential clinical significance.Identifying anti-Jra is challenging owing to a lack of commercially available antisera. We developed an alternative approach to rapidly predict the presence of anti-Jra using the TaqMan single-nucleotide polymorphism (SNP)-genotyping method.
Methods:
Residual peripheral blood samples from 10 patients suspected of having the anti-Jr a were collected. Two samples with confirmed Jr(a–) RBCs and anti-Jra were used to validate the TaqMan genotyping assay by comparing the genotyping results with direct sequencing. The accuracy of the assay in predicting the presence of anti-Jra was verified through crossmatching with in-house Jr(a–) O+ RBCs.
Results:
The TaqMan-genotyping method was validated with two Jr(a–) RBC- and anti-Jra -confirmed samples that showed concordant Jr a genotyping and direct sequencing results.Jra genotyping for the remaining samples and crossmatching the serum samples with inhouse Jr(a–) O+ RBCs showed consistent results.
Conclusions
We validated a rapid, simple, accurate, and cost-effective method for predicting the presence of anti-Jra using a TaqMan-based SNP-genotyping assay. Implementing this method in routine practice in clinical laboratories will assist in solving difficult problems regarding alloantibodies to high-prevalence RBC antigens and ultimately aid in providing safe and timely transfusions and proper patient care.
10.Korean National Healthcare-associated Infections SurveillanceSystem for Hand Hygiene Report: Data Summary from July 2019to December 2022
Sung Ran KIM ; Kyung-Sook CHA ; Oh Mee KWEON ; Mi Na KIM ; Og Son KIM ; Ji-Hee KIM ; Soyeon PARK ; Myoung Jin SHIN ; Eun-Sung YOU ; Sung Eun LEE ; Sun Ju JUNG ; Jongsuk JEOUNG ; In-Soon CHOI ; Jong Rim CHOI ; Ji-Youn CHOI ; Si-Hyeon HAN ; Hae Kyung HONG
Korean Journal of healthcare-associated Infection Control and Prevention 2024;29(1):40-47
Background:
Hand hygiene is considered the simplest and most cost-effective method of infection prevention. Regular observation and feedback on hand hygiene compliance are key strategies for its enhancement. This study evaluated the effectiveness of hand hygiene surveillance, including direct observation and feedback, by comprehensively analyzing the reported hand hygiene compliance within the Korean National Healthcare-Associated Infections Surveillance System from 2019 to 2022.
Methods:
Participating medical institutions included general hospitals and hospitals with infection control departments that consented to participate. Hand hygiene surveillance was conducted using direct observation. Collected data, including healthcare workers, clinical areas, hand hygiene moments, and hand hygiene compliance, were recorded to calculate hand hygiene compliance rates. Additionally, the volume of alcohol-based hand sanitizers used per patient per day was investigated as an indirect indicator of hand hygiene compliance. The study was conducted from July 2019 to December 2022.
Results:
Hand hygiene compliance increased from 87.2% in Q3 2019 to 89.9% in 2022. Nurses and medical technologists showed the highest compliance rates, whereas doctors showed the lowest compliance rates. Intensive care units excelled in compliance, whereas emergency de partments lagged. Compliance was highest after patient contact and lowest when the patient’s surroundings were touched. Larger hospitals consumed more alcohol-based hand sanitizers than smaller hospitals did.
Conclusion
This study confirmed an improvement in hand hygiene compliance through sustained surveillance, indicating its contribution not only to preventing infection transfer within healthcare facilities but also to fostering a culture of hand hygiene in the country.

Result Analysis
Print
Save
E-mail