1.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
2.The role of placenta Hofbauer cells during pregnancy and pregnancy complications
Seung-Woo YANG ; Han-Sung HWANG ; Young-Sun KANG
Obstetrics & Gynecology Science 2025;68(1):9-17
Placental Hofbauer cells (HBCs) are specialized macrophages present in the human placenta that play a crucial role in maintaining a healthy pregnancy. These cells are derived from the fetal mesoderm and are responsible for various functions, including immune regulation, angiogenesis, and nutrient transport. In normal pregnancies, HBCs primarily exhibit an M2 or immunomodulatory phenotype, which helps maintain a tolerant and antiinflammatory environment at the maternal-fetal interface. However, in pregnancies complicated by conditions such as immunological disorders, inflammation, or infection, the phenotype and function of HBCs may be altered. Although emerging evidence has highlighted the vital role of HBCs in both normal pregnancies and those with complications, such as chorioamnionitis, gestational diabetes, preeclampsia, and viral infections, their role remains unclear. Recent research also suggests a relationship between HBCs and the development of diseases in offspring. Understanding the role of HBCs in pregnancy could provide insights into the pathophysiology of various pregnancy-related disorders and offer potential therapeutic targets for improving maternal and fetal outcomes. This review explores the functions of HBCs in normal pregnancy and their involvement in complications, emphasizing their potential as biomarkers or targets for interventions aimed at reducing the incidence of adverse pregnancy outcomes. Additionally, we reviewed their potential for perinatal research in recent studies.
3.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
4.Neuroinflammation in Adaptive Immunodeficient Mice with Colitis-like Symptoms
Sung Hee PARK ; Junghwa KANG ; Ji-Young LEE ; Jeong Seon YOON ; Sung Hwan HWANG ; Ji Young LEE ; Deepak Prasad GUPTA ; Il Hyun BAEK ; Ki Jun HAN ; Gyun Jee SONG
Experimental Neurobiology 2025;34(1):34-47
Emerging evidence suggests that systemic inflammation may play a critical role in neurological disorders. Recent studies have shown the connection between inflammatory bowel diseases (IBD) and neurological disorders, revealing a bidirectional relationship through the gut-brain axis.Immunotherapies, such as Treg cells infusion, have been proposed for IBD. However, the role of adaptive immune cells in IBD-induced neuroinflammation remains unclear. In this study, we established an animal model for IBD in mice with severe combined immune-deficient (SCID), an adaptive immune deficiency, to investigate the role of adaptive immune cells in IBD-induced neuroinflammation. Mice were fed 1%, 3%, or 5% dextran sulfate sodium (DSS) for 5 days. We measured body weight, colon length, disease activity index (DAI), and crypt damage. Pro-inflammatory cytokines were measured in the colon, while microglial morphology, neuronal count, and inflammatory cytokines were analyzed in the brain. In the 3% DSS group, colitis symptoms appeared at day 7, with reduced colon length and increased crypt damage showing colitis-like symptoms. By day 21, colon length and crypt damage persisted, while DAI showed recovery. Although colonic inflammation peaked at day 7, no significant increase in inflammatory cytokines or microglial hyperactivation was observed in the brain. By day 21, neuroinflammation was detected, albeit with a slight delay, in the absence of adaptive immune cells. The colitis-induced neuroinflammation model provides insights into the fundamental immune mechanisms of the gut-brain axis and may contribute to developing immune cell therapies for IBD-induced neuroinflammation.
5.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
6.The role of placenta Hofbauer cells during pregnancy and pregnancy complications
Seung-Woo YANG ; Han-Sung HWANG ; Young-Sun KANG
Obstetrics & Gynecology Science 2025;68(1):9-17
Placental Hofbauer cells (HBCs) are specialized macrophages present in the human placenta that play a crucial role in maintaining a healthy pregnancy. These cells are derived from the fetal mesoderm and are responsible for various functions, including immune regulation, angiogenesis, and nutrient transport. In normal pregnancies, HBCs primarily exhibit an M2 or immunomodulatory phenotype, which helps maintain a tolerant and antiinflammatory environment at the maternal-fetal interface. However, in pregnancies complicated by conditions such as immunological disorders, inflammation, or infection, the phenotype and function of HBCs may be altered. Although emerging evidence has highlighted the vital role of HBCs in both normal pregnancies and those with complications, such as chorioamnionitis, gestational diabetes, preeclampsia, and viral infections, their role remains unclear. Recent research also suggests a relationship between HBCs and the development of diseases in offspring. Understanding the role of HBCs in pregnancy could provide insights into the pathophysiology of various pregnancy-related disorders and offer potential therapeutic targets for improving maternal and fetal outcomes. This review explores the functions of HBCs in normal pregnancy and their involvement in complications, emphasizing their potential as biomarkers or targets for interventions aimed at reducing the incidence of adverse pregnancy outcomes. Additionally, we reviewed their potential for perinatal research in recent studies.
7.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
8.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
9.The role of placenta Hofbauer cells during pregnancy and pregnancy complications
Seung-Woo YANG ; Han-Sung HWANG ; Young-Sun KANG
Obstetrics & Gynecology Science 2025;68(1):9-17
Placental Hofbauer cells (HBCs) are specialized macrophages present in the human placenta that play a crucial role in maintaining a healthy pregnancy. These cells are derived from the fetal mesoderm and are responsible for various functions, including immune regulation, angiogenesis, and nutrient transport. In normal pregnancies, HBCs primarily exhibit an M2 or immunomodulatory phenotype, which helps maintain a tolerant and antiinflammatory environment at the maternal-fetal interface. However, in pregnancies complicated by conditions such as immunological disorders, inflammation, or infection, the phenotype and function of HBCs may be altered. Although emerging evidence has highlighted the vital role of HBCs in both normal pregnancies and those with complications, such as chorioamnionitis, gestational diabetes, preeclampsia, and viral infections, their role remains unclear. Recent research also suggests a relationship between HBCs and the development of diseases in offspring. Understanding the role of HBCs in pregnancy could provide insights into the pathophysiology of various pregnancy-related disorders and offer potential therapeutic targets for improving maternal and fetal outcomes. This review explores the functions of HBCs in normal pregnancy and their involvement in complications, emphasizing their potential as biomarkers or targets for interventions aimed at reducing the incidence of adverse pregnancy outcomes. Additionally, we reviewed their potential for perinatal research in recent studies.
10.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.

Result Analysis
Print
Save
E-mail