1.Advancing Korean Medical Large Language Models: Automated Pipeline for Korean Medical Preference Dataset Construction
Jean SEO ; Sumin PARK ; Sungjoo BYUN ; Jinwook CHOI ; Jinho CHOI ; Hyopil SHIN
Healthcare Informatics Research 2025;31(2):166-174
Objectives:
Developing large language models (LLMs) in biomedicine requires access to high-quality training and alignment tuning datasets. However, publicly available Korean medical preference datasets are scarce, hindering the advancement of Korean medical LLMs. This study constructs and evaluates the efficacy of the Korean Medical Preference Dataset (KoMeP), an alignment tuning dataset constructed with an automated pipeline, minimizing the high costs of human annotation.
Methods:
KoMeP was generated using the DAHL score, an automated hallucination evaluation metric. Five LLMs (Dolly-v2-3B, MPT-7B, GPT-4o, Qwen-2-7B, Llama-3-8B) produced responses to 8,573 biomedical examination questions, from which 5,551 preference pairs were extracted. Each pair consisted of a “chosen” response and a “rejected” response, as determined by their DAHL scores. The dataset was evaluated when trained through two different alignment tuning methods, direct preference optimization (DPO) and odds ratio preference optimization (ORPO) respectively across five different models. The KorMedMCQA benchmark was employed to assess the effectiveness of alignment tuning.
Results:
Models trained with DPO consistently improved KorMedMCQA performance; notably, Llama-3.1-8B showed a 43.96% increase. In contrast, ORPO training produced inconsistent results. Additionally, English-to-Korean transfer learning proved effective, particularly for English-centric models like Gemma-2, whereas Korean-to-English transfer learning achieved limited success. Instruction tuning with KoMeP yielded mixed outcomes, which suggests challenges in dataset formatting.
Conclusions
KoMeP is the first publicly available Korean medical preference dataset and significantly improves alignment tuning performance in LLMs. The DPO method outperforms ORPO in alignment tuning. Future work should focus on expanding KoMeP, developing a Korean-native dataset, and refining alignment tuning methods to produce safer and more reliable Korean medical LLMs.
2.Enhancing Identification of High-Risk cN0 Lung Adenocarcinoma Patients Using MRI-Based Radiomic Features
Harim KIM ; Jonghoon KIM ; Soohyun HWANG ; You Jin OH ; Joong Hyun AHN ; Min-Ji KIM ; Tae Hee HONG ; Sung Goo PARK ; Joon Young CHOI ; Hong Kwan KIM ; Jhingook KIM ; Sumin SHIN ; Ho Yun LEE
Cancer Research and Treatment 2025;57(1):57-69
Purpose:
This study aimed to develop a magnetic resonance imaging (MRI)–based radiomics model to predict high-risk pathologic features for lung adenocarcinoma: micropapillary and solid pattern (MPsol), spread through air space, and poorly differentiated patterns.
Materials and Methods:
As a prospective study, we screened clinical N0 lung cancer patients who were surgical candidates and had undergone both 18F-fluorodeoxyglucose (FDG) positron emission tomography–computed tomography (PET/CT) and chest CT from August 2018 to January 2020. We recruited patients meeting our proposed imaging criteria indicating high-risk, that is, poorer prognosis of lung adenocarcinoma, using CT and FDG PET/CT. If possible, these patients underwent an MRI examination from which we extracted 77 radiomics features from T1-contrast-enhanced and T2-weighted images. Additionally, patient demographics, maximum standardized uptake value on FDG PET/CT, and the mean apparent diffusion coefficient value on diffusion-weighted image, were considered together to build prediction models for high-risk pathologic features.
Results:
Among 616 patients, 72 patients met the imaging criteria for high-risk lung cancer and underwent lung MRI. The magnetic resonance (MR)–eligible group showed a higher prevalence of nodal upstaging (29.2% vs. 4.2%, p < 0.001), vascular invasion (6.5% vs. 2.1%, p=0.011), high-grade pathologic features (p < 0.001), worse 4-year disease-free survival (p < 0.001) compared with non-MR-eligible group. The prediction power for MR-based radiomics model predicting high-risk pathologic features was good, with mean area under the receiver operating curve (AUC) value measuring 0.751-0.886 in test sets. Adding clinical variables increased the predictive performance for MPsol and the poorly differentiated pattern using the 2021 grading system (AUC, 0.860 and 0.907, respectively).
Conclusion
Our imaging criteria can effectively screen high-risk lung cancer patients and predict high-risk pathologic features by our MR-based prediction model using radiomics.
3.Enhancing Identification of High-Risk cN0 Lung Adenocarcinoma Patients Using MRI-Based Radiomic Features
Harim KIM ; Jonghoon KIM ; Soohyun HWANG ; You Jin OH ; Joong Hyun AHN ; Min-Ji KIM ; Tae Hee HONG ; Sung Goo PARK ; Joon Young CHOI ; Hong Kwan KIM ; Jhingook KIM ; Sumin SHIN ; Ho Yun LEE
Cancer Research and Treatment 2025;57(1):57-69
Purpose:
This study aimed to develop a magnetic resonance imaging (MRI)–based radiomics model to predict high-risk pathologic features for lung adenocarcinoma: micropapillary and solid pattern (MPsol), spread through air space, and poorly differentiated patterns.
Materials and Methods:
As a prospective study, we screened clinical N0 lung cancer patients who were surgical candidates and had undergone both 18F-fluorodeoxyglucose (FDG) positron emission tomography–computed tomography (PET/CT) and chest CT from August 2018 to January 2020. We recruited patients meeting our proposed imaging criteria indicating high-risk, that is, poorer prognosis of lung adenocarcinoma, using CT and FDG PET/CT. If possible, these patients underwent an MRI examination from which we extracted 77 radiomics features from T1-contrast-enhanced and T2-weighted images. Additionally, patient demographics, maximum standardized uptake value on FDG PET/CT, and the mean apparent diffusion coefficient value on diffusion-weighted image, were considered together to build prediction models for high-risk pathologic features.
Results:
Among 616 patients, 72 patients met the imaging criteria for high-risk lung cancer and underwent lung MRI. The magnetic resonance (MR)–eligible group showed a higher prevalence of nodal upstaging (29.2% vs. 4.2%, p < 0.001), vascular invasion (6.5% vs. 2.1%, p=0.011), high-grade pathologic features (p < 0.001), worse 4-year disease-free survival (p < 0.001) compared with non-MR-eligible group. The prediction power for MR-based radiomics model predicting high-risk pathologic features was good, with mean area under the receiver operating curve (AUC) value measuring 0.751-0.886 in test sets. Adding clinical variables increased the predictive performance for MPsol and the poorly differentiated pattern using the 2021 grading system (AUC, 0.860 and 0.907, respectively).
Conclusion
Our imaging criteria can effectively screen high-risk lung cancer patients and predict high-risk pathologic features by our MR-based prediction model using radiomics.
4.Advancing Korean Medical Large Language Models: Automated Pipeline for Korean Medical Preference Dataset Construction
Jean SEO ; Sumin PARK ; Sungjoo BYUN ; Jinwook CHOI ; Jinho CHOI ; Hyopil SHIN
Healthcare Informatics Research 2025;31(2):166-174
Objectives:
Developing large language models (LLMs) in biomedicine requires access to high-quality training and alignment tuning datasets. However, publicly available Korean medical preference datasets are scarce, hindering the advancement of Korean medical LLMs. This study constructs and evaluates the efficacy of the Korean Medical Preference Dataset (KoMeP), an alignment tuning dataset constructed with an automated pipeline, minimizing the high costs of human annotation.
Methods:
KoMeP was generated using the DAHL score, an automated hallucination evaluation metric. Five LLMs (Dolly-v2-3B, MPT-7B, GPT-4o, Qwen-2-7B, Llama-3-8B) produced responses to 8,573 biomedical examination questions, from which 5,551 preference pairs were extracted. Each pair consisted of a “chosen” response and a “rejected” response, as determined by their DAHL scores. The dataset was evaluated when trained through two different alignment tuning methods, direct preference optimization (DPO) and odds ratio preference optimization (ORPO) respectively across five different models. The KorMedMCQA benchmark was employed to assess the effectiveness of alignment tuning.
Results:
Models trained with DPO consistently improved KorMedMCQA performance; notably, Llama-3.1-8B showed a 43.96% increase. In contrast, ORPO training produced inconsistent results. Additionally, English-to-Korean transfer learning proved effective, particularly for English-centric models like Gemma-2, whereas Korean-to-English transfer learning achieved limited success. Instruction tuning with KoMeP yielded mixed outcomes, which suggests challenges in dataset formatting.
Conclusions
KoMeP is the first publicly available Korean medical preference dataset and significantly improves alignment tuning performance in LLMs. The DPO method outperforms ORPO in alignment tuning. Future work should focus on expanding KoMeP, developing a Korean-native dataset, and refining alignment tuning methods to produce safer and more reliable Korean medical LLMs.
5.Enhancing Identification of High-Risk cN0 Lung Adenocarcinoma Patients Using MRI-Based Radiomic Features
Harim KIM ; Jonghoon KIM ; Soohyun HWANG ; You Jin OH ; Joong Hyun AHN ; Min-Ji KIM ; Tae Hee HONG ; Sung Goo PARK ; Joon Young CHOI ; Hong Kwan KIM ; Jhingook KIM ; Sumin SHIN ; Ho Yun LEE
Cancer Research and Treatment 2025;57(1):57-69
Purpose:
This study aimed to develop a magnetic resonance imaging (MRI)–based radiomics model to predict high-risk pathologic features for lung adenocarcinoma: micropapillary and solid pattern (MPsol), spread through air space, and poorly differentiated patterns.
Materials and Methods:
As a prospective study, we screened clinical N0 lung cancer patients who were surgical candidates and had undergone both 18F-fluorodeoxyglucose (FDG) positron emission tomography–computed tomography (PET/CT) and chest CT from August 2018 to January 2020. We recruited patients meeting our proposed imaging criteria indicating high-risk, that is, poorer prognosis of lung adenocarcinoma, using CT and FDG PET/CT. If possible, these patients underwent an MRI examination from which we extracted 77 radiomics features from T1-contrast-enhanced and T2-weighted images. Additionally, patient demographics, maximum standardized uptake value on FDG PET/CT, and the mean apparent diffusion coefficient value on diffusion-weighted image, were considered together to build prediction models for high-risk pathologic features.
Results:
Among 616 patients, 72 patients met the imaging criteria for high-risk lung cancer and underwent lung MRI. The magnetic resonance (MR)–eligible group showed a higher prevalence of nodal upstaging (29.2% vs. 4.2%, p < 0.001), vascular invasion (6.5% vs. 2.1%, p=0.011), high-grade pathologic features (p < 0.001), worse 4-year disease-free survival (p < 0.001) compared with non-MR-eligible group. The prediction power for MR-based radiomics model predicting high-risk pathologic features was good, with mean area under the receiver operating curve (AUC) value measuring 0.751-0.886 in test sets. Adding clinical variables increased the predictive performance for MPsol and the poorly differentiated pattern using the 2021 grading system (AUC, 0.860 and 0.907, respectively).
Conclusion
Our imaging criteria can effectively screen high-risk lung cancer patients and predict high-risk pathologic features by our MR-based prediction model using radiomics.
6.Advancing Korean Medical Large Language Models: Automated Pipeline for Korean Medical Preference Dataset Construction
Jean SEO ; Sumin PARK ; Sungjoo BYUN ; Jinwook CHOI ; Jinho CHOI ; Hyopil SHIN
Healthcare Informatics Research 2025;31(2):166-174
Objectives:
Developing large language models (LLMs) in biomedicine requires access to high-quality training and alignment tuning datasets. However, publicly available Korean medical preference datasets are scarce, hindering the advancement of Korean medical LLMs. This study constructs and evaluates the efficacy of the Korean Medical Preference Dataset (KoMeP), an alignment tuning dataset constructed with an automated pipeline, minimizing the high costs of human annotation.
Methods:
KoMeP was generated using the DAHL score, an automated hallucination evaluation metric. Five LLMs (Dolly-v2-3B, MPT-7B, GPT-4o, Qwen-2-7B, Llama-3-8B) produced responses to 8,573 biomedical examination questions, from which 5,551 preference pairs were extracted. Each pair consisted of a “chosen” response and a “rejected” response, as determined by their DAHL scores. The dataset was evaluated when trained through two different alignment tuning methods, direct preference optimization (DPO) and odds ratio preference optimization (ORPO) respectively across five different models. The KorMedMCQA benchmark was employed to assess the effectiveness of alignment tuning.
Results:
Models trained with DPO consistently improved KorMedMCQA performance; notably, Llama-3.1-8B showed a 43.96% increase. In contrast, ORPO training produced inconsistent results. Additionally, English-to-Korean transfer learning proved effective, particularly for English-centric models like Gemma-2, whereas Korean-to-English transfer learning achieved limited success. Instruction tuning with KoMeP yielded mixed outcomes, which suggests challenges in dataset formatting.
Conclusions
KoMeP is the first publicly available Korean medical preference dataset and significantly improves alignment tuning performance in LLMs. The DPO method outperforms ORPO in alignment tuning. Future work should focus on expanding KoMeP, developing a Korean-native dataset, and refining alignment tuning methods to produce safer and more reliable Korean medical LLMs.
7.Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression
Sumin OH ; Yang-Hyun BAEK ; Sungju JUNG ; Sumin YOON ; Byeonggeun KANG ; Su-hyang HAN ; Gaeul PARK ; Je Yeong KO ; Sang-Young HAN ; Jin-Sook JEONG ; Jin-Han CHO ; Young-Hoon ROH ; Sung-Wook LEE ; Gi-Bok CHOI ; Yong Sun LEE ; Won KIM ; Rho Hyun SEONG ; Jong Hoon PARK ; Yeon-Su LEE ; Kyung Hyun YOO
Clinical and Molecular Hepatology 2024;30(2):247-262
Background/Aims:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.
Methods:
Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.
Results:
After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.
Conclusions
We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.
8.Expert Consensus on the Structure, Role, and Procedures of the Korea Expert Committee on Immunization Practices
Cho Ryok KANG ; Bin AHN ; Young June CHOE ; So Yun LIM ; Han Wool KIM ; Hyun Mi KANG ; Ji Young PARK ; Hyungmin LEE ; Seungho LEE ; Sumin JEONG ; Sunghee KWON ; Eun Hwa CHOI
Journal of Korean Medical Science 2024;39(21):e166-
Background:
The Korea Expert Committee on Immunization Practices (KECIP) is a key advisory body the government to develop guidelines and provide technical advisory activities on immunization policies in Korea. A recent policy study, inspired by global best practices, aims to enhance KECIP's functionality for providing timely and transparent recommendations in the face of evolving vaccine science and emerging infectious diseases like COVID-19.
Methods:
This study reviewed the current status of KECIP and collected expert opinions through surveys and consultations. Among the 40 panel members who were surveyed, 19 responded to a questionnaire specifically designed to assess the potential areas of improvement within KECIP.
Results:
The majority of respondents favored maintaining the current member count and emphasized the need for a subcommittee. Opinions varied on issues such as the length of KECIP’s term, the representation of vaccine manufacturers’ perspectives, and the chairperson’s role. However, there was a consensus on the importance of expertise, transparency, and fair proceedings within the committee.
Conclusion
This study underscores the pivotal role of KECIP in shaping national immunization policies, emphasizing the necessity for informed guidance amidst evolving vaccine science and emerging infectious diseases. Furthermore, it stressed the importance of enhancing KECIP’s capacity to effectively address evolving public health challenges and maintain successful immunization programs in South Korea.
9.Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro
Sumin LEE ; Yoonha CHOI ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2024;18(4):451-463
BACKGROUND/OBJECTIVES:
The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models.MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
RESULTS:
Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy.
CONCLUSION
Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
10.Association of Pre- and Perinatal Risk Factors With Tourette Syndrome or Chronic Tic Disorders in a Korean School-Age Population
Wooseok CHOI ; Soon-beom HONG ; Johanna Inhynag KIM ; Jung LEE ; Soomin JANG ; Yebin D AHN ; You Bin LIM ; Sumin KIM ; Mee Rim OH ; Bung-Nyun KIM
Journal of the Korean Academy of Child and Adolescent Psychiatry 2023;34(1):37-44
Objectives:
Tic disorders are highly heritable; however, growing evidence suggests that environmental factors play a significant role in their pathogenesis. Studies on these factors have been inconsistent, with conflicting results. Therefore, this study aimed to examine the associations of pre- and perinatal exposure to Tourette syndrome (TS) or chronic tic disorders (CTD) in Korean school-aged children.
Methods:
This case-control study used data from a large prospective cohort study. The primary outcome was TS/CTD diagnosis according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) criteria and Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version-Korean Version. Demographic, pre-, and perinatal information was obtained from the maternal questionnaires. Data between the TS/CTD and control groups were compared using the chi-squared or Student’s t-test, as appropriate. Two-step logistic regression analyses were used to test the association between TS/CTD and pre- and perinatal risk factors.
Results:
We included of 223 children (78 with TS/CTD and 145 controls). Significant differences in the demographic data between the two groups were observed. The male sex ratio, mean parental age, parental final education level, and family history of tics were included as confounders. In the final adjusted multivariable model, TS/CTD was significantly associated with antiemetic exposure during pregnancy (odds ratio [OR]=16.61, 95% confidence interval [CI] 1.49–185.22, p=0.02) and medically assisted reproduction (OR=7.89, 95% CI 2.28–27.28, p=0.01).
Conclusion
Antiemetic exposure and medically assisted reproduction are significantly associated with the risk of TS/CTD. These results should be replicated in future prospective and gene-by-environment studies.

Result Analysis
Print
Save
E-mail