1.Functional analysis on sucrose transporters in sweet potato.
Yiran LIU ; Zhengdan WU ; Weitai WU ; Chaobin YANG ; Cairui CHEN ; Kai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2772-2793
		                        		
		                        			
		                        			Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
		                        		
		                        		
		                        		
		                        			Ipomoea batatas/metabolism*
		                        			;
		                        		
		                        			Arabidopsis/metabolism*
		                        			;
		                        		
		                        			Sucrose/metabolism*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			DNA, Complementary
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Plants, Genetically Modified/genetics*
		                        			;
		                        		
		                        			Membrane Transport Proteins/metabolism*
		                        			;
		                        		
		                        			Starch/metabolism*
		                        			;
		                        		
		                        			Plant Proteins/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Plant
		                        			
		                        		
		                        	
2.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
		                        		
		                        			
		                        			In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cattle
		                        			;
		                        		
		                        			Neocallimastigales/metabolism*
		                        			;
		                        		
		                        			Anaerobiosis
		                        			;
		                        		
		                        			Rumen/microbiology*
		                        			;
		                        		
		                        			Propionates/metabolism*
		                        			;
		                        		
		                        			Isobutyrates/metabolism*
		                        			;
		                        		
		                        			Cellulose/metabolism*
		                        			;
		                        		
		                        			Fungi
		                        			;
		                        		
		                        			Starch/metabolism*
		                        			;
		                        		
		                        			Glucose/metabolism*
		                        			;
		                        		
		                        			Acetates
		                        			;
		                        		
		                        			Sucrose/metabolism*
		                        			;
		                        		
		                        			Cellulases
		                        			;
		                        		
		                        			Cellulase
		                        			
		                        		
		                        	
3.Effect of Tongdu Tiaoshen acupuncture on CREB/BDNF/TrkB signaling pathway of hippocampus in rats with post-stroke depression.
Pei-Yang SUN ; Hao-Ran CHU ; Nan LI ; Hui LIU ; Shi-Yang LIU ; Fang ZHANG ; Wei LI ; Shui-Rou CHU ; Pei-Fang LI
Chinese Acupuncture & Moxibustion 2022;42(8):907-913
		                        		
		                        			OBJECTIVE:
		                        			To observe the regulative effect of Tongdu Tiaoshen acupuncture on the depression-like behavior and cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/tyrosine protein kinase B (TrkB) signaling pathway of hippocampus in rats with post-stroke depression (PSD), and to explore its possible mechanism on improving PSD.
		                        		
		                        			METHODS:
		                        			A total of 36 SPF SD rats were randomized into a sham operation group, a model group and a Tongdu Tiaoshen group, 12 rats in each group. The compound method of Zea Longa suture-occlusion and chronic unpredictable mild stress (CUMS) was used to establish the PSD model in rats of the model group and the Tongdu Tiaoshen group. On the 4th day after modeling, acupuncture was applied at "Dazhui" (GV 14), "Shuigou" (GV 26), "Baihui" (GV 20) and "Shenting" (GV 24) in the Tongdu Tiaoshen group, 40 min every time, once a day, 6 times a week for 4 weeks consecutively. On the 2nd day after PSD modeling and after 4-week intervention, Zea Longa neurobehavioral score was evaluated, sucrose water consumption test and open-field test were performed; biochemical method was used to detect the SOD, CAT activity and MDA level in hippocampal CA1 area; ELISA method was used to detect the serum level of BDNF; real-time PCR was used to detect the mRNA expression of BDNF, TrkB and CREB in hippocampal CA1 area; Western blot was used to detect the protein expression of BDNF, TrkB, CREB and p-CREB in hippocampal CA1 area.
		                        		
		                        			RESULTS:
		                        			Compared with the sham operation group, Zea Longa neurobehavioral scores were increased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were decreased after modeling and intervention in the model group and after modeling in the Tongdu Tiaoshen group (P<0.05). Compared with the model group, Zea Longa neurobehavioral score was decreased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were increased after intervention in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were decreased (P<0.05), MDA level in hippocampal CA1 area was increased in the model group (P<0.05); compared with the model group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were increased (P<0.05), MDA level was decreased in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the mRNA expression of BDNF, TrkB and CREB as well as the protein expression of BDNF, TrkB, CREB and p-CREB were decreased in hippocampal CA1 area in the model group (P<0.05); compared with the model group, the mRNA expression of BDNF, TrkB and CREB, the protein expression of BDNF, TrkB and p-CREB as well as the ratio of p-CREB/CREB were increased in the Tongdu Tiaoshen group (P<0.05).
		                        		
		                        			CONCLUSION
		                        			Tongdu Tiaoshen acupuncture can improve the depression-like behavior in PSD rats, the mechanism may be related to the inhibition of oxidative stress in hippocampal tissues and the enhanced activity of CREB/BDNF/TrkB signaling pathway.
		                        		
		                        		
		                        		
		                        			Acupuncture Therapy
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor/metabolism*
		                        			;
		                        		
		                        			Cyclic AMP Response Element-Binding Protein/metabolism*
		                        			;
		                        		
		                        			Depression/therapy*
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Stroke/complications*
		                        			;
		                        		
		                        			Sucrose
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			
		                        		
		                        	
4.Function, structure and catalytic mechanism of sucrose phosphate synthase: a review.
Jiyong SU ; Yuan YAO ; Yuhan LIU ; Qiuyu HAN ; Wenlu ZHANG
Chinese Journal of Biotechnology 2021;37(6):1858-1868
		                        		
		                        			
		                        			Sucrose is a natural product occurs widely in nature. In living organisms such as plants, sucrose phosphate synthase (SPS) is the key rate-limiting enzyme for sucrose synthesis. SPS catalyzes the synthesis of sucrose-6-phosphate, which is further hydrolyzed by sucrose phosphatase to form sucrose. Researches on SPS in recent decades have been focused on the determination of enzymatic activity of SPS, the identification of the inhibitors and activators of SPS, the covalent modification of SPS, the carbohydrate distribution in plants regulated by SPS, the mechanism for promoting plant growth by SPS, the sweetness of fruit controlled by SPS, and many others. A systematic review of these aspects as well as the crystal structure and catalytic mechanism of SPS are presented.
		                        		
		                        		
		                        		
		                        			Carbohydrate Metabolism
		                        			;
		                        		
		                        			Glucosyltransferases/metabolism*
		                        			;
		                        		
		                        			Plants/metabolism*
		                        			;
		                        		
		                        			Sucrose
		                        			
		                        		
		                        	
5.My Sweetheart Is Broken: Role of Glucose in Diabetic Cardiomyopathy.
Manoja K BRAHMA ; Mark E PEPIN ; Adam R WENDE
Diabetes & Metabolism Journal 2017;41(1):1-9
		                        		
		                        			
		                        			Despite overall reductions in heart disease prevalence, the risk of developing heart failure has remained 2-fold greater among people with diabetes. Growing evidence has supported that fluctuations in glucose level and uptake contribute to cardiovascular disease (CVD) by modifying proteins, DNA, and gene expression. In the case of glucose, clinical studies have shown that increased dietary sugars for healthy individuals or poor glycemic control in diabetic patients further increased CVD risk. Furthermore, even after decades of maintaining tight glycemic control, susceptibility to disease progression can persist following a period of poor glycemic control through a process termed "glycemic memory." In response to chronically elevated glucose levels, a number of studies have identified molecular targets of the glucose-mediated protein posttranslational modification by the addition of an O-linked N-acetylglucosamine to impair contractility, calcium sensitivity, and mitochondrial protein function. Additionally, elevated glucose contributes to dysfunction in coupling glycolysis to glucose oxidation, pentose phosphate pathway, and polyol pathway. Therefore, in the "sweetened" environment associated with hyperglycemia, there are a number of pathways contributing to increased susceptibly to "breaking" the heart of diabetics. In this review we will discuss the unique contribution of glucose to heart disease and recent advances in defining mechanisms of action.
		                        		
		                        		
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			Cardiomyopathies
		                        			;
		                        		
		                        			Cardiovascular Diseases
		                        			;
		                        		
		                        			Diabetic Cardiomyopathies*
		                        			;
		                        		
		                        			Dietary Sucrose
		                        			;
		                        		
		                        			Disease Progression
		                        			;
		                        		
		                        			DNA
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Glucose*
		                        			;
		                        		
		                        			Glycolysis
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			Heart Diseases
		                        			;
		                        		
		                        			Heart Failure
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hyperglycemia
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			Mitochondrial Proteins
		                        			;
		                        		
		                        			Pentose Phosphate Pathway
		                        			;
		                        		
		                        			Prevalence
		                        			;
		                        		
		                        			Protein Processing, Post-Translational
		                        			
		                        		
		                        	
6.Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions.
China Journal of Chinese Materia Medica 2015;40(22):4384-4388
		                        		
		                        			
		                        			Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.
		                        		
		                        		
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glycyrrhiza
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Seedlings
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sucrose
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli.
Feng LI ; Jiangfeng MA ; Mingke WU ; Yaliang JI ; Wufang CHEN ; Xinyi REN ; Min JIANG
Chinese Journal of Biotechnology 2015;31(4):534-541
		                        		
		                        			
		                        			Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid.
		                        		
		                        		
		                        		
		                        			Bioreactors
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Escherichia coli Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Membrane Transport Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			Molasses
		                        			;
		                        		
		                        			Saccharum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Succinic Acid
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Sucrose
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
8.Molecular cloning and over-expression of a fructosyltransferase from Aspergillus niger QU10.
Guoqing ZHANG ; Jing YANG ; Jiaji SHI ; Shijun QIAN ; Yapeng CHAO
Chinese Journal of Biotechnology 2015;31(4):512-522
		                        		
		                        			
		                        			The main commercial production of fructooligosaccharides (FOS) comes from enzymatic transformation using sucrose as substrate by microbial enzyme fructosyltransferase. A fructosyltransferase genomic DNA was isolated from Aspergillus niger QU10 by PCR. The nucleotide sequence showed a 1 941 bp size, and has been submitted to GenBank (KF699529). The cDNA of the fructosyltransferase, containing an open reading frame of 1 887 bp, was further cloned by RT-PCR. The fructosyltransferase gene from Aspergillus niger was functionally expressed both in Escherichia coli and Pichia pastoris GS 115. The highest activity value for the construction with the α-factor signal peptide reached 431 U/mL after 3 days of incubation. The recombinant enzyme is extensively glycosylated, and the active form is probably represented by a homodimer with an apparent molecular mass of 200 kDa as judged from mobility in seminative PAGE gels. The extracellular recombinant enzyme converted sucrose mostly to FOS, mainly 1-kestose and nystose, liberating glucose. FOS reached a maximal value and represented about 58% of total sugars present in the reaction mixture after 4 h reaction. The results suggest that the availability of recombinant Pichia pastoris as a new source of a FOS-producing enzyme might result of biotechnology interest for industrial application.
		                        		
		                        		
		                        		
		                        			Aspergillus niger
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			;
		                        		
		                        			DNA, Complementary
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			Fungal Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glycosylation
		                        			;
		                        		
		                        			Hexosyltransferases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Molecular Weight
		                        			;
		                        		
		                        			Pichia
		                        			;
		                        		
		                        			Sucrose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Trisaccharides
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis.
Bosi YUAN ; Shuping ZHOU ; Youke LU ; Jiong LIU ; Xinxin JIN ; Haijun WAN ; Fangyu WANG
Gut and Liver 2015;9(6):734-740
		                        		
		                        			
		                        			BACKGROUND/AIMS: This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. METHODS: Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. RESULTS: The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%+/-1.2% in controls and was significantly increased to 7.2%+/-1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. CONCLUSIONS: There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis/*physiology
		                        			;
		                        		
		                        			Claudins/*metabolism
		                        			;
		                        		
		                        			Colitis/chemically induced/immunology/*physiopathology
		                        			;
		                        		
		                        			Colon/immunology/physiopathology
		                        			;
		                        		
		                        			Dextran Sulfate
		                        			;
		                        		
		                        			Intestinal Mucosa/*physiopathology
		                        			;
		                        		
		                        			Lactulose/metabolism
		                        			;
		                        		
		                        			Mannitol/metabolism
		                        			;
		                        		
		                        			Mannose-Binding Lectin/*immunology
		                        			;
		                        		
		                        			Permeability
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sucrose/analogs & derivatives/metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
10.Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.
Eva-Maria DECKER ; Christian KLEIN ; Dimitri SCHWINDT ; Christiane von OHLE
International Journal of Oral Science 2014;6(4):195-204
		                        		
		                        			
		                        			The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
		                        		
		                        		
		                        		
		                        			Bacterial Load
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Bacteriological Techniques
		                        			;
		                        		
		                        			Biofilms
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cariogenic Agents
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Culture Media
		                        			;
		                        		
		                        			Dental Enamel
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Fluorescent Dyes
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Gene Expression Regulation, Enzymologic
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Genotype
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glucosyltransferases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Microbial Viability
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Microscopy, Confocal
		                        			;
		                        		
		                        			Polysaccharides, Bacterial
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Streptococcus mutans
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sucrose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Sweetening Agents
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tetrazolium Salts
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			Xylitol
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail