1.Epidemiological Surveillance:Genetic Diversity of Rotavirus Group A in the Pearl River Delta,Guangdong,China in 2019
Ying Jie JIANG ; Dan LIANG ; Li WANG ; Yun XIAO ; Feng Yu LIANG ; Xia Bi KE ; Juan SU ; Hong XIAO ; Tao WANG ; Min ZOU ; Jian Hong LI ; Wen Chang KE
Biomedical and Environmental Sciences 2024;37(3):278-293
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China. Methods This study included individuals aged 28 days-85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA. Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0-1 year,and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains. Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
2.Clinical efficacy of periodontal endoscopy-assisted subgingival scaling and root planning and its effect on psy-chology and quality of life in patients with periodontitis
Qiubao SU ; Ningxiang WANG ; Mei ZHANG ; Juan WU
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(1):50-56
Objective To investigate the clinical efficacy and effects of periodontal endoscope(PE)-assisted subgin-gival scaling and root planning(SRP)and traditional SRP on the psychological and quality of life of patients with peri-odontitis.Methods This study was reviewed and approved by the Ethics Committee,and informed consent was ob-tained from the patients.Patients with periodontitis who were treated in the Department of Periodontology,Nanjing Sto-matological Hospital,Medical School of Nanjing University from April 2018 to December 2022 with residual periodontal pockets(PD≥5 mm)6 weeks after traditional SRP treatment were enrolled,and the residual periodontal pockets were further treated with PE-assisted SRP(PE+SRP).After 6 weeks of traditional SRP treatment and 3 months of PE+SRP treatment,clinical indicators,including plaque index(PLI),probing depth(PD),clinical attachment loss(CAL)and bleeding on probing(BOP),were measured,and periodontal tissue self-awareness scale scores,oral health impact profile-14(OHIP-14)score and dental fear scale(DFS)score were collected.Moreover,visual analog scale(VAS)scores were col-lected after traditional SRP and PE-assisted SRP treatments.Results Twenty-three patients with periodontitis,includ-ing 832 sites of 486 affected teeth,were included in the clinical study.Three months after PE+SRP treatment,all clini-cal periodontal indicators,PLI(t = 9.254,P<0.001),PD(t = 50.724,P<0.001),CAL(t = 22.407,P<0.001)and BOP(t = 9.217,P<0.001),were significantly improved.Compared with traditional SRP(VAS:2.48±1.70),the pain caused by PE+SRP(VAS:2.57±1.80)was not significantly different(t = 0,192,P = 0.850).There was no significant dif-ference in the scores of the periodontal tissue self-awareness scale between the two groups(t = 1.485,P = 0.152).The OHIP-14(SRP:12.13±7.63;PE+SRP:10.26±5.25,t =-1.589,P = 0.126)and DFS(SRP:40.70±12.63;SRP+PE:41.57±12.61,t = 0.404,P = 0.690)scores were not significantly different.Conclusion All clinical periodontal indi-cators were significantly improved after PE-assisted SRP treatment of residual periodontal pockets,and compared with traditional SRP,PE-assisted SRP had no negative impact on the quality of life or psychological status of patients with periodontitis.Therefore,PE+SRP can be promoted in clinical practice.
3.Risk prediction models for pancreatic fistula after pancreaticoduodenectomy:A systematic review and a Meta-analysis
Zaichun PU ; Ping JIA ; Juan LIU ; Yushuang SU ; Li WANG ; Qin ZHANG ; Danyang GUO
Journal of Clinical Hepatology 2024;40(11):2266-2276
Objective To systematically review the risk prediction models for postoperative pancreatic fistula(POPF)after pancreaticoduodenectomy(PD),and to provide a reference for the clinical screening and application of POPF-related risk models.Methods This study was conducted according to the PRISMA guidelines,with a PROSPERO registration number of CRD42023437672.PubMed,Scopus,Embase,Web of Science,the Cochrane Library,CNKI,VIP,Wanfang Data,China Medical Journal Full-text Database,and CBM were searched for studies on establishing risk prediction models for POPF after PD published up to April 26,2024.The PROBAST tool was used to assess the quality of articles,and RevMan 5.4 and MedCalc were used to perform the Meta-analysis.Results A total of 36 studies were included,involving 20 119 in total,and the incidence rate of POPF after PD was 7.4%—47.8%.A total of 55 risk prediction models were established in the 36 articles,with an area under the receiver operating characteristic curve(AUC)of 0.690-0.952,among which 52 models had an AUC of>0.7.The quality assessment of the articles showed high risk of bias and good applicability.MedCalc was used to perform a statistical analysis of AUC values,and the results showed a pooled AUC of 0.833(95%confidence interval:0.808-0.857).The Meta-analysis showed that body mass index,amylase in drainage fluid on the first day after surgery,preoperative serum albumin,pancreatic duct diameter,pancreatic texture,fat score,tumor location,blood loss,sex,time of operation,main pancreatic duct index,and pancreatic CT value were predictive factors for POPF(all P<0.05).Conclusion The risk prediction models for POPF after PD is still in the exploratory stage.There is a lack of calibration methods and internal validation for most prediction models,and only the univariate analysis is used to for the screening of variables,which leads to the high risk of bias.In the future,it is necessary to improve the methods for model establishment,so as to develop risk prediction models with a higher prediction accuracy.
4.Application of digital technology in the repair of functional and aesthetic defects in patients with acid erosion and severe attrition:a case report
Weiwei HOU ; Xuhong ZHENG ; Xiaoling CHEN ; Weiliang CAI ; Chaoyang WANG ; Zhiwei SU ; Juan ZHAO
West China Journal of Stomatology 2024;42(1):111-120
Noncarious lesions,a multifactorial condition encompassing tooth attrition,abrasion,and erosion,have a surge in prevalence and required increased attention in clinical practice.These nonbacterial-associated tooth de-fects can compromise aesthetics,phonetics,and mastica-tory functions.When providing full-arch fixed occlusal rehabilitation for such cases,the treatment strategy should extend beyond by restoring dentition morphology and aesthetics.This report details a complex case of erosive dental wear addressed through a fully digital,full-arch fixed occlusal rehabilitation.A 4D virtual patient was created using multiple digital data sources,including intraoral scanning,3D facial scanning,digital facebow registration,and mandibular movement tracing.With a comprehensive understanding of the masticatory system,various types of microinvasive prostheses were customized for each tooth,including labial ve-neers,buccal-occlusal veneers,occlusal veneers,overlays,inlays,and full crowns,were customized for each tooth.The reported digital workflow offered a predictable diagnostic and treatment strategy,which was facilitated by virtual visual-ization and comprehensive quality control throughout the process.
5.Design of medical positive pressure protective suit for long-voyage aeromedical evacuation
Yu-Juan SU ; Li-Qun WANG ; Ya-Di ZHANG ; Xiang-Yi YANG ; Zhen-Yao SONG
Chinese Medical Equipment Journal 2024;45(11):113-116
Objective To develop a medical positive pressure protective suit for long-voyage aeromedical evacuation to realize protective isolation and drinking water and energy supply for medical personnel during long-voyage aeromedical evacuation of respiratory infectious disease patients.Methods The medical positive pressure protective suit had a one-piece structure,with its main part made of hydroentangled non-woven fabric,head and forebreast parts made of amorphous polyethylene terephthalate anti-fog material and wearing-and taking-off parts sealed with zipper and autohesion,which was equipped with a portable positive pressure air supply device,an airborne centralized positive pressure air supply device and a monitoring and warning device.The portable positive pressure air supply device was fixed in the back of the suit at the waist,the airborne device was made by modifying the commercially available positive pressure air supply fan,and the monitoring and warning device monitored the air supply volume of the fan,the battery power and the pressure inside the suit.Results The suit behaved well in protection,clean fresh air supply without time limitation and facilitating hydration and energy replenishment of medical personnel by forming three activity spaces.Conclusion The suit developed can continuously provide a clean and comfortable microenvironment,meeting the requirements of medical personnel for protection and hydration and energy replenishment during long-voyage aeromedical evacuation.[Chinese Medical Equipment Journal,2024,45(11):113-116]
6.Preparation and Performance Characterization of Microcapsules Containing Ethanol Extract from Galangal
Su-Juan PENG ; Zhen-Rong WEN ; Zhen-Ying FENG ; Dan CHEN ; Jian-Wen WANG ; Li-Ping HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1307-1315
Objective To explore the best preparation process and performance characterization of microcapsules containing ethanol extract from galangal.Methods With gum arabic(GA)-chitosan(CS)as capsule wall material,microcapsules were prepared by complex coacervation method.With drug loading and encapsulation efficiency as indexes,the optimal preparation technology of microcapsules was screened by orthogonal design method.The content of ethanol extract of galangal in microcapsules was determined by high performance liquid chromatography(HPLC).The prepared microcapsules were characterized by infrared spectrometer and scanning electron microscope.Results The optimum preparation conditions of microcapsules containing galangal ethanol extract were as follows:wall material ratio(GA/CS)6∶1,core to wall ratio 1∶1,coagulation time 45 minutes,curing agent dosage 3 mL.Under these conditions,the drug loading and encapsulation efficiency of microcapsules containing galangal ethanol extract were 27.17%and 80.07%,respectively,and the sustained release performance of microcapsules of galangal ethanol extract was superior to that of galangal ethanol extract.Conclusion The preparation of microcapsules containing galangal ethanol extract by complex coacervation method has good encapsulation,and the method is simple,stable and reliable,and has high feasibility.
7.Construction and simulation of medical resources demand model during epidemic events of infectious diseases
Dong WANG ; Yong-Quan TIAN ; Wei ZHANG ; Hong-Shu ZHOU ; Bo XIE ; Zhen-Yan LI ; Si-Hai FAN ; Su-Juan HUANG
Chinese Journal of Infection Control 2024;23(10):1286-1294
Objective To construct the demand model of four types of medical resources including beds in hospi-tal,beds in intensive care unit(ICU),ventilators and medical human resources during the major infectious disease epidemic events,simulate and analyze the treatment of infectious diseases when different medical resources are in short supply.Methods Based on the susceptible-exposed-infectious-recovered(SEIR)model,considering the infec-tivity of infected persons,the susceptibility of the population and the immunity of convalescents,the characteristics of asymptomatic COVID-19 patients and different clinical types,the"COVID-19 infection-hospitalization model"was constructed.By collecting and setting the parameters of disease transmission,clinical course and medical re-source shortage scenarios,an analysis model of allocation and supply of urban medical resources during infectious di-sease epidemic events was initially formed based on Anylogic platform,the supply and demand of medical resources during infectious disease events in different scenarios were analyzed.Results In the non-intervention scenario,the peak time of bed demand was on the 107th day,and the peak value was 160.92 beds per thousand people;the peak time of ventilator demand was on the 122nd day,and the peak value was 5.61 units per thousand people;the peak time of ICU bed demand was on the 117th day,and the peak value was 12.78 beds per thousand people;the peak time of the demand for medical human resources was on the 109th day,and the peak value was 151.12 persons per thousand persons.The simulation results suggested that there were some differences in the impact of different medi-cal resources on the outcome of medical treatment.Conclusion This study constructs an analytical tool for the allo-cation and supply of urban medical resources under the epidemic events of infectious diseases,and the results of mul-tiple simulation experiments suggest that bed resources and medical human resources play more important roles in the outcome of medical treatment.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.


Result Analysis
Print
Save
E-mail