1.Study on the Enzymatic Deproteinization Technology,Composition Analysis and Immunomodulatory Activity of Isatidis Ra-dix Polysaccharides
Mengting LAI ; Metsawur MEMITIMIN ; Tong LI ; Ping XIAO ; Shulan SU ; Jinao DUAN
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(4):379-390
		                        		
		                        			
		                        			OBJECTIVE To optimize the deproteinization process of Isatidis Radix polysaccharides and further explore its immu-nomodulatory activity,and to provide a scientific basis for the development and utilization of it.METHODS The optimum conditions of enzymatic deproteinization were optimized by a single factor combined with the Box-Behnken response surface method.The chemical composition and structural characteristics of deproteinized Isatidis Radix polysaccharides were analyzed by UV-visible spectrum,Fourier transform-infrared spectroscopy,high-performance gel permeation chromatography,high-performance liquid chromatography and scan-ning electron microscopy.The effects of deproteinized Isatidis Radix Polysaccharide on neutrophils,macrophages,IL-1β and IL-6 in zebrafish were investigated by using a zebrafish immunocompromised model.RESULTS The optimal enzymatic deproteinization process was as follows:trypsin 500 U·mL-1,pH 8.0,enzymatic hydrolysis time 5 h,enzymatic hydrolysis temperature 37℃.The deproteinization rate was(86.39±0.07)%,and the comprehensive score was(91.15±0.37)%.Ultraviolet,infrared spectroscopy scanning and scanning electron microscopy showed that the protein contained in the crude polysaccharide could be removed by enzymat-ic method.The relative molecular weight of the polysaccharides were between 5.82 and 60.26 kDa.The monosaccharide mole compo-sition was mannose ∶ rhamnose ∶ galacturonic acid ∶ glucose ∶ galactose ∶ arabinose=2.17 ∶ 0.96 ∶ 2.90 ∶ 83.25 ∶ 4.88 ∶ 5.84.The results of immune activity evaluation showed that when the concentration of deproteinized Radix Isatidis polysaccharides was 50~300 μg·mL-1,it could significantly increase the density of zebrafish immune cells,increase the number of macrophages,and reduce the content of IL-1β and IL-6 in immunocompromised zebrafish,thus exerting immunomodulatory effects.CONCLUAION The enzy-matic method can effectively remove the proteins contained in the crude polysaccharides of Isatidis Radix,and the deproteinized Isatidis Radix polysaccharides have certain immunomodulatory effects.
		                        		
		                        		
		                        		
		                        	
		                				2.Study on the catalytic mechanism of triterpene C-29 carboxylases from Tripterygium wilfordii  based on directed evolution
		                			
		                			Pan-ting LIU ; Yi-feng ZHANG ; Yuan LIU ; Jie GAO ; Lin MA ; Xiao-yi WU ; Ya-ting HU ; Ping SU ; Shi-jun YUAN ; Xia-nan ZHANG ; Wei GAO
Acta Pharmaceutica Sinica 2024;59(6):1883-1893
		                        		
		                        			
		                        			 Celastrol and wilforlide A are the main active triterpenoids of the traditional Chinese medicine Lei Gong Teng, which have anti-tumour, anti-inflammatory and immunosuppressive activities, and are the material basis for the clinical efficacy of Lei Gong Teng-related Chinese medicinal preparations. By analysing the biosynthetic pathway of active ingredients, optimizing genetic elements and utilizing "cell factory" to produce triterpenoids heterologously will be an effective way to obtain from 
		                        		
		                        	
3.Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture (version 2024)
Yun HAN ; Feifei JIA ; Qing LU ; Xingling XIAO ; Hua LIN ; Ying YING ; Junqin DING ; Min GUI ; Xiaojing SU ; Yaping CHEN ; Ping ZHANG ; Yun XU ; Tianwen HUANG ; Jiali CHEN ; Yi WANG ; Luo FAN ; Fanghui DONG ; Wenjuan ZHOU ; Wanxia LUO ; Xiaoyan XU ; Chunhua DENG ; Xiaohua CHEN ; Yuliu ZHENG ; Dekun YI ; Lin ZHANG ; Hanli PAN ; Jie CHEN ; Kaipeng ZHUANG ; Yang ZHOU ; Sui WENJIE ; Ning NING ; Songmei WU ; Jinli GUO ; Sanlian HU ; Lunlan LI ; Xiangyan KONG ; Hui YU ; Yifei ZHU ; Xifen YU ; Chen CHEN ; Shuixia LI ; Yuan GAO ; Xiuting LI ; Leling FENG
Chinese Journal of Trauma 2024;40(9):769-780
		                        		
		                        			
		                        			Hip fracture in the elderly is characterized by high incidence, high disability rate, and high mortality and has been recognized as a public health issue threatening their health. Surgery is the preferred choice for the treatment of elderly patients with hip fracture. However, lower extremity deep venous thrombosis (DVT) has an extremely high incidence rate during the perioperative period, and may significantly increase the risk of patients′ death once it progresses to pulmonary embolism. In response to this issue, the clinical guidelines and expert consensuses all emphasize active application of comprehensive preventive measures, including basic prevention, physical prevention, and pharmacological prevention. In this prevention system, basic prevention is the basis of physical and pharmacological prevention. However,there is a lack of unified and definite recommendations for basic preventive measures in clinical practice. To this end, the Orthopedic Nursing Professional Committee of the Chinese Nursing Association and Nursing Department of the Orthopedic Branch of the China International Exchange and Promotive Association for Medical and Health Care organized relevant nursing experts to formulate Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture ( version 2024) . A total of 10 recommendations were proposed, aiming to standardize the basic preventive measures for lower extremity DVT in elderly patients with hip fractures during the perioperative period and promote their subsequent rehabilitation.
		                        		
		                        		
		                        		
		                        	
4.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
		                        		
		                        			
		                        			Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
		                        		
		                        		
		                        		
		                        	
5.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
		                        		
		                        			
		                        			Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
		                        		
		                        		
		                        		
		                        	
6.Direct medical costs of tuberculosis patients and its influencing factors in Hainan Province
WANG Fan ; HU Xiao-jie ; SU Zhu-na ; LIU Chun-ping
China Tropical Medicine 2023;23(5):506-
		                        		
		                        			
		                        			Abstract: Objective To investigate and analyze the factors influencing the direct medical costs of tuberculosis patients in Hainan Province, so as to provide scientific reference for reducing the medical burden of patients and adjusting the medical insurance reimbursement policies in the local area. Methods Using the total health expenditure accounting data of Hainan Province in 2020, including the outpatient and inpatient data of 14 provincial medical institutions, 235 city and county level medical institutions, and other relevant data from the 2020 Hainan Statistical Yearbook and Health Financial Yearbook, the direct medical costs of tuberculosis patients in the province in that year were calculated, and the influencing factors were explored using single factor analysis and multivariate generalized linear model. Results The final number of cases included in this study was 11 979, including 7 526 males (62.83%) and 4 453 females (37.17%). The total direct medical costs of patients were 43.207 3 million yuan, of which the total outpatient costs were 2.733 9 million yuan (6.32%) and the total inpatient costs were 40.473 4 million yuan (93.67%). In the cost composition analysis, the drug cost was 17.971 million yuan (41.44%), the examination cost was 8.854 7 million yuan (20.49%), other costs were 16.445 5 million yuan (38.06%), and the median (quartile) M(P25,P75) direct medical cost of each patient was 177.50 (66.73,764.89) yuan. The multivariate generalized linear model analysis showed that hospitalization, new rural cooperative medical insurance (NRCMI) and urban employee medical insurance were the influencing factors of the increase in direct medical costs of tuberculosis patients the median (quartile) M(P25,P75) of direct medical costs are 10 425.04 (6 560.87,17 374.9), 10 246.5 (5 871.28,17 220.33), 3 177.2 (293.09,7 730.23) yuan respectively; the OR(95%CI) values were -3.505 (-3.499- -3.517), 1.559 (1.551-1.569) and 2.191 (2.188-2.207) respectively. Conclusions The direct medical costs of tuberculosis patients in Hainan Province are high. Hospitalization, the new rural cooperative medical insurance and the medical insurance for urban workers are the influencing factors of the increase in costs.
		                        		
		                        		
		                        		
		                        	
7.Epidemiological distribution of genotypes and sub-genotypes of hepatitis B virus in 15 ethnic groups in China.
Xiao Qi GUO ; Shuang ZHANG ; Hui ZHENG ; Feng WANG ; Ning MIAO ; Qiu Dong SU ; Sheng Li BI ; Guo Min ZHANG ; Fu Zhen WANG ; Li Ping SHEN
Chinese Journal of Epidemiology 2023;44(5):759-764
		                        		
		                        			
		                        			Objective: To understand the distribution of genotypes and sub-genotypes of HBV in different ethnic groups in China. Methods: The HBsAg positive samples were selected by stratified multi-stage cluster sampling from the sample base of national HBV sero-epidemiological survey in 2020 for the amplification of S gene of HBV by nested PCR. A phylogeny tree was constructed to determine the genotypes and sub-genotypes of HBV. The distribution of genotypes and sub-genotypes of HBV were analyzed comprehensively by using laboratory data and demographic data. Results: A total of 1 539 positive samples from 15 ethnic groups were successfully amplified and analyzed, and 5 genotypes (B, C, D, I and C/D) were detected. The proportion of genotype B was higher in ethnic group of Han (74.52%, 623/836), Zhuang (49.28%, 34/69), Yi (53.19%, 25/47), Miao (94.12%, 32/34), Buyi (81.48%, 22/27). The proportions of genotype C were higher in ethnic groups of Yao (70.91%, 39/55). Genotype D was the predominant genotype in Uygur (83.78%, 31/37). Genotype C/D were detected in Tibetan (92.35%,326/353). In this study, 11 cases of genotype I were detected, 8 of which were distributed in Zhuang nationality. Except for Tibetan, sub-genotype B2 accounted for more than 80.00% in genotype B in all ethnic groups. The proportions of sub-genotype C2 were higher in 8 ethnic groups, i.e. Han, Tibetan, Yi, Uygur, Mongolian, Manchu, Hui and Miao. The proportions of sub-genotype C5 were higher in ethnic groups of Zhuang (55.56%, 15/27) and Yao (84.62%, 33/39). For genotype D, sub-genotype D3 was detected in Yi ethnic group and sub-genotype D1 was detected in both Uygur and Kazak. The proportions of sub-genotype C/D1 and C/D2 in Tibetan were 43.06% (152/353) and 49.29% (174/353). For all the 11 cases of genotype I infection, only sub-genotype I1 was detected. Conclusions: Five genotypes and 15 sub-genotypes of HBV were found in 15 ethnic groups. There were significant differences in the distribution of genotypes and sub-genotypes of HBV among different ethnic groups.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Asian People
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Ethnicity
		                        			;
		                        		
		                        			Genotype
		                        			;
		                        		
		                        			Gerbillinae
		                        			;
		                        		
		                        			Hepatitis B virus/genetics*
		                        			;
		                        		
		                        			Hepatitis B/virology*
		                        			
		                        		
		                        	
8.Hospitalization costs of pediatric community-acquired pneumonia in Shanghai.
Ying Zi YE ; Yong Hao GUI ; Quan LU ; Jian Guo HONG ; Rui FENG ; Bing SHEN ; Yue Jie ZHANG ; Xiao Yan DONG ; Ling SU ; Xiao Qing WANG ; Jia Yu WANG ; Dan Ping GU ; Hong XU ; Guo Ying HUANG ; Song Xuan YU ; Xiao Bo ZHANG
Chinese Journal of Pediatrics 2023;61(2):146-153
		                        		
		                        			
		                        			Objective: To investigate the epidemiology and hospitalization costs of pediatric community-acquired pneumonia (CAP) in Shanghai. Methods: A retrospective case summary was conducted on 63 614 hospitalized children with CAP in 59 public hospitals in Shanghai from January 2018 to December 2020. These children's medical records, including their basic information, diagnosis, procedures, and costs, were extracted. According to the medical institutions they were admitted, the patients were divided into the children's hospital group, the tertiary general hospital group and the secondary hospital group; according to the age, they were divided into <1 year old group, 1-<3 years old group, 3-<6 years old group, 6-<12 years old group and 12-18 years old group; according to the CAP severity, they were divided into severe pneumonia group and non-severe pneumonia group; according to whether an operation was conducted, the patients were divided into the operation group and the non-operation group. The epidemiological characteristics and hospitalization costs were compared among the groups. The χ2 test or Wilcoxon rank sum test was used for the comparisons between two groups as appropriate, and the Kruskal-Wallis H test was conducted for comparisons among multiple groups. Results: A total of 63 614 hospitalized children with CAP were enrolled, including 34 243 males and 29 371 females. Their visiting age was 4 (2, 6) years. The length of stay was 6 (5, 8) days. There were 17 974 cases(28.3%) in the secondary hospital group, 35 331 cases (55.5%) in the tertiary general hospital group and 10 309 cases (16.2%) in the children's hospital group. Compared with the hospitalizations cases in 2018 (27 943), the cases in 2019 (29 009) increased by 3.8% (1 066/27 943), while sharply declined by 76.2% (21 281/27 943) in 2020 (6 662). There were significant differences in the proportion of patients from other provinces and severe pneumonia cases, and the hospitalization costs among the children's hospital, secondary hospital and tertiary general hospital (7 146 cases(69.3%) vs. 2 202 cases (12.3%) vs. 9 598 cases (27.2%), 6 929 cases (67.2%) vs. 2 270 cases (12.6%) vs. 9 397 cases (26.6%), 8 304 (6 261, 11 219) vs. 1 882 (1 304, 2 796) vs. 3 195 (2 364, 4 352) CNY, χ2=10 462.50, 9 702.26, 28 037.23, all P<0.001). The annual total hospitalization costs of pediatric CAP from 2018 to 2020 were 110 million CNY, 130 million CNY and 40 million CNY, respectively. And the cost for each hospitalization increased year by year, which was 2 940 (1 939, 4 438), 3 215 (2 126, 5 011) and 3 673 (2 274, 6 975) CNY, respectively. There were also significant differences in the hospitalization expenses in the different age groups of <1 year old, 1-<3 years old, 3-<6 years old, 6-<12 years old and 12-18 years old (5 941 (2 787, 9 247) vs. 2 793 (1 803, 4 336) vs. 3 013 (2 070, 4 329) vs. 3 473 (2 400, 5 097) vs. 4 290 (2 837, 7 314) CNY, χ2=3 462.39, P<0.001). The hospitalization cost of severe pneumonia was significantly higher than that of non-severe cases (5 076 (3 250, 8 364) vs. 2 685 (1 780, 3 843) CNY, Z=109.77, P<0.001). The cost of patients who received operation was significantly higher than that of whom did not (10 040 (4 583, 14 308) vs. 3 083 (2 025, 4 747) CNY, Z=44.46, P<0.001). Conclusions: The number of children hospitalized with CAP in Shanghai decreased significantly in 2020 was significantly lower than that in 2018 and 2019.The proportion of patients from other provinces and with severe pneumonia are mainly admitted in children's hospitals. Hospitalization costs are higher in children's hospitals, and also for children younger than 1 year old, severe cases and patients undergoing operations.
		                        		
		                        		
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			China/epidemiology*
		                        			;
		                        		
		                        			Hospitalization
		                        			;
		                        		
		                        			Community-Acquired Infections/therapy*
		                        			;
		                        		
		                        			Hospitals, Pediatric
		                        			;
		                        		
		                        			Pneumonia/therapy*
		                        			
		                        		
		                        	
9.Analysis of risk factors of mortality in infants and toddlers with moderate to severe pediatric acute respiratory distress syndrome.
Bo Liang FANG ; Feng XU ; Guo Ping LU ; Xiao Xu REN ; Yu Cai ZHANG ; You Peng JIN ; Ying WANG ; Chun Feng LIU ; Yi Bing CHENG ; Qiao Zhi YANG ; Shu Fang XIAO ; Yi Yu YANG ; Xi Min HUO ; Zhi Xian LEI ; Hong Xing DANG ; Shuang LIU ; Zhi Yuan WU ; Ke Chun LI ; Su Yun QIAN ; Jian Sheng ZENG
Chinese Journal of Pediatrics 2023;61(3):216-221
		                        		
		                        			
		                        			Objective: To identify the risk factors in mortality of pediatric acute respiratory distress syndrome (PARDS) in pediatric intensive care unit (PICU). Methods: Second analysis of the data collected in the "efficacy of pulmonary surfactant (PS) in the treatment of children with moderate to severe PARDS" program. Retrospective case summary of the risk factors of mortality of children with moderate to severe PARDS who admitted in 14 participating tertiary PICU between December 2016 to December 2021. Differences in general condition, underlying diseases, oxygenation index, and mechanical ventilation were compared after the group was divided by survival at PICU discharge. When comparing between groups, the Mann-Whitney U test was used for measurement data, and the chi-square test was used for counting data. Receiver Operating Characteristic (ROC) curves were used to assess the accuracy of oxygen index (OI) in predicting mortality. Multivariate Logistic regression analysis was used to identify the risk factors for mortality. Results: Among 101 children with moderate to severe PARDS, 63 (62.4%) were males, 38 (37.6%) were females, aged (12±8) months. There were 23 cases in the non-survival group and 78 cases in the survival group. The combined rates of underlying diseases (52.2% (12/23) vs. 29.5% (23/78), χ2=4.04, P=0.045) and immune deficiency (30.4% (7/23) vs. 11.5% (9/78), χ2=4.76, P=0.029) in non-survival patients were significantly higher than those in survival patients, while the use of pulmonary surfactant (PS) was significantly lower (8.7% (2/23) vs. 41.0% (32/78), χ2=8.31, P=0.004). No significant differences existed in age, sex, pediatric critical illness score, etiology of PARDS, mechanical ventilation mode and fluid balance within 72 h (all P>0.05). OI on the first day (11.9(8.3, 17.1) vs.15.5(11.7, 23.0)), the second day (10.1(7.6, 16.6) vs.14.8(9.3, 26.2)) and the third day (9.2(6.6, 16.6) vs. 16.7(11.2, 31.4)) after PARDS identified were all higher in non-survival group compared to survival group (Z=-2.70, -2.52, -3.79 respectively, all P<0.05), and the improvement of OI in non-survival group was worse (0.03(-0.32, 0.31) vs. 0.32(-0.02, 0.56), Z=-2.49, P=0.013). ROC curve analysis showed that the OI on the thind day was more appropriate in predicting in-hospital mortality (area under the curve= 0.76, standard error 0.05,95%CI 0.65-0.87,P<0.001). When OI was set at 11.1, the sensitivity was 78.3% (95%CI 58.1%-90.3%), and the specificity was 60.3% (95%CI 49.2%-70.4%). Multivariate Logistic regression analysis showed that after adjusting for age, sex, pediatric critical illness score and fluid load within 72 h, no use of PS (OR=11.26, 95%CI 2.19-57.95, P=0.004), OI value on the third day (OR=7.93, 95%CI 1.51-41.69, P=0.014), and companied with immunodeficiency (OR=4.72, 95%CI 1.17-19.02, P=0.029) were independent risk factors for mortality in children with PARDS. Conclusions: The mortality of patients with moderate to severe PARDS is high, and immunodeficiency, no use of PS and OI on the third day after PARDS identified are the independent risk factors related to mortality. The OI on the third day after PARDS identified could be used to predict mortality.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Critical Illness
		                        			;
		                        		
		                        			Pulmonary Surfactants/therapeutic use*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Risk Factors
		                        			;
		                        		
		                        			Respiratory Distress Syndrome/therapy*
		                        			
		                        		
		                        	
10.Guideline for clinical comprehensive evaluation of Chinese patent medicine (2022 version).
Wei-An YUAN ; Jun-Hua ZHANG ; Jian-Ping LIU ; Zhong-Qi YANG ; Jun-Ling CAO ; Xing LIAO ; Xiao-Yu XI ; Mei HAN ; Wen-Yuan LI ; Zhen-Wen QIU ; Shi-Yin FENG ; Yuan-Yuan GUO ; Lu-Jia CAO ; Xiao-Hong LIAO ; Yan-Ling AI ; Ju HUANG ; Lu-Lu JIA ; Xiang-Fei SU ; Xue WU ; Ze-Qi DAI ; Ji-Hua GUO ; Bing-Qing LU ; Xiao-Xiao ZHANG ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2023;48(1):256-264
		                        		
		                        			
		                        			Currently,the research or publications related to the clinical comprehensive evaluation of Chinese patent medicine are increasing,which attracts the broad attention of all circles. According to the completed clinical evaluation report on Chinese patent medicine,there are still practical problems and technical difficulties such as unclear responsibility of the evaluation organization,unclear evaluation subject,miscellaneous evaluation objects,and incomplete and nonstandard evaluation process. In terms of evaluation standards and specifications,there are different types of specifications or guidelines with different emphases issued by different academic groups or relevant institutions. The professional guideline is required to guide the standardized and efficient clinical comprehensive evaluation of Chinese patent medicine and further improve the authority and quality of evaluation. In combination with the characteristics of Chinese patent medicine and the latest research achievement at home and abroad,the detailed specifications were formulated from six aspects including design,theme selection,content and index,outcome,application and appraisal,and quality control. The guideline was developed based on the guideline development requirements of China Assoication of Chinese medicine. After several rounds of expert consensus and public consultation,the current version of the guideline has been developed.
		                        		
		                        		
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Nonprescription Drugs
		                        			;
		                        		
		                        			Consensus
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Reference Standards
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail