1.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
2.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
3.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
4.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
5.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
6.Colon cancer: the 2023 Korean clinical practice guidelines for diagnosis and treatment
Hyo Seon RYU ; Hyun Jung KIM ; Woong Bae JI ; Byung Chang KIM ; Ji Hun KIM ; Sung Kyung MOON ; Sung Il KANG ; Han Deok KWAK ; Eun Sun KIM ; Chang Hyun KIM ; Tae Hyung KIM ; Gyoung Tae NOH ; Byung-Soo PARK ; Hyeung-Min PARK ; Jeong Mo BAE ; Jung Hoon BAE ; Ni Eun SEO ; Chang Hoon SONG ; Mi Sun AHN ; Jae Seon EO ; Young Chul YOON ; Joon-Kee YOON ; Kyung Ha LEE ; Kyung Hee LEE ; Kil-Yong LEE ; Myung Su LEE ; Sung Hak LEE ; Jong Min LEE ; Ji Eun LEE ; Han Hee LEE ; Myong Hoon IHN ; Je-Ho JANG ; Sun Kyung JEON ; Kum Ju CHAE ; Jin-Ho CHOI ; Dae Hee PYO ; Gi Won HA ; Kyung Su HAN ; Young Ki HONG ; Chang Won HONG ; Jung-Myun KWAK ;
Annals of Coloproctology 2024;40(2):89-113
Colorectal cancer is the third most common cancer in Korea and the third leading cause of death from cancer. Treatment outcomes for colon cancer are steadily improving due to national health screening programs with advances in diagnostic methods, surgical techniques, and therapeutic agents.. The Korea Colon Cancer Multidisciplinary (KCCM) Committee intends to provide professionals who treat colon cancer with the most up-to-date, evidence-based practice guidelines to improve outcomes and help them make decisions that reflect their patients’ values and preferences. These guidelines have been established by consensus reached by the KCCM Guideline Committee based on a systematic literature review and evidence synthesis and by considering the national health insurance system in real clinical practice settings. Each recommendation is presented with a recommendation strength and level of evidence based on the consensus of the committee.
7.2023 Korean Multidisciplinary Guidelines for Colon Cancer Management: Summary of Radiological Points
Nieun SEO ; Hyo Seon RYU ; Myungsu LEE ; Sun Kyung JEON ; Kum Ju CHAE ; Joon-Kee YOON ; Kyung Su HAN ; Ji Eun LEE ; Jae Seon EO ; Young Chul YOON ; Sung Kyung MOON ; Hyun Jung KIM ; Jung-Myun KWAK
Korean Journal of Radiology 2024;25(9):769-772
8.Association of PTTG1 expression with invasiveness of non-functioning pituitary adenomas
Su Jung KUM ; Hye Won LEE ; Soon Gu KIM ; Hyungsik PARK ; Ilseon HWANG ; Sang Pyo KIM
Journal of Pathology and Translational Medicine 2022;56(1):22-31
Background:
Pituitary tumor transforming gene 1 (PTTG1), paired-like homeodomain 2 (PITX2), and galectin-3 have been widely studied as predictive biomarkers for various tumors and are involved in tumorigenesis and tumor progression. We evaluated the usefulness of PTTG1, PITX2, and galectin-3 as predictive biomarkers for invasive non-functioning pituitary adenomas (NFPAs) by determining the relationship between the expressions of these three proteins and the invasiveness of the NFPAs. We also investigated whether PTTG1, E-cadherin, and Ki-67, which are known to be related to each other, show a correlation with NFPA features.
Methods:
A retrospective study was conducted on 87 patients with NPFAs who underwent surgical removal. The NFPAs were classified into three groups based on magnetic resonance imaging findings of suprasellar extension and cavernous sinus invasion. Immunohistochemical staining for PTTG1, PITX2, galectin-3, E-cadherin, and Ki-67 was performed on tissue microarrays.
Results:
PTTG1 expression showed a statistically significant correlation with the invasiveness of NFPAs, whereas PITX2 and galectin-3 did not have a relationship with the invasiveness of NFPAs. Moreover, there was no association among PTTG1, E-cadherin, and Ki-67 expression.
Conclusions
PTTG1 has the potential to serve as a predictive biomarker for invasive NFPA. Furthermore, this study may serve as a reference for the development of PTTG1-targeted therapeutic agents.
9.An Outbreak Associated with Sapovirus GI.3 in an Elementary School in Gyeonggi-do, Korea
Seung-Rye CHO ; Su Jung YUN ; Su-Jin CHAE ; Sunyoung JUNG ; Jong Hwa KIM ; Kum Chan YONG ; Eul Ho CHO ; Wooyoung CHOI ; Deog-Yong LEE
Journal of Korean Medical Science 2020;35(34):e281-
On October 4, 2018, an outbreak of gastroenteritis associated with sapovirus occurred among elementary school students in Gyeonggi-do, Korea. Epidemiologic studies were conducted in a retrospective cohort approach. Using self-administered questionnaires, we collected information on symptoms and food items consumed. Of the 999 subjects, 17 developed patients that met the case definition. The main symptom was vomiting (100%), and the symptomatic age was 6-12 years. Positive samples were identified by conventional reverse transcription polymerase chain reaction for sequencing. They were classified into genotype GI.3 by phylogenetic analysis. This is the first report of an outbreak associated with sapovirus GI.3 in Korea.
10.Amoebic Encephalitis Caused by Balamuthia mandrillaris
Su Jung KUM ; Hye Won LEE ; Hye Ra JUNG ; Misun CHOE ; Sang Pyo KIM
Journal of Pathology and Translational Medicine 2019;53(5):327-331
We present the case of a 71-year-old man who was diagnosed with amoebic encephalitis caused by Balamuthia mandrillaris. He had rheumatic arthritis for 30 years and had undergone continuous treatment with immunosuppressants. First, he complained of partial spasm from the left thigh to the left upper limb. Magnetic resonance imaging revealed multifocal enhancing nodules in the cortical and subcortical area of both cerebral hemispheres, which were suggestive of brain metastases. However, the patient developed fever with stuporous mentality and an open biopsy was performed immediately. Microscopically, numerous amoebic trophozoites, measuring 20 to 25 µm in size, with nuclei containing one to four nucleoli and some scattered cysts having a double-layered wall were noted in the background of hemorrhagic necrosis. Based on the microscopic findings, amoebic encephalitis caused by Balamuthia mandrillaris was diagnosed. The patient died on the 10th day after being admitted at the hospital. The diagnosis of amoebic encephalitis in the early stage is difficult for clinicians. Moreover, most cases undergo rapid deterioration, resulting in fatal consequences. In this report, we present the first case of B. mandrillaris amoebic encephalitis with fatal progression in a Korean patient.
Aged
;
Balamuthia mandrillaris
;
Biopsy
;
Brain
;
Cerebrum
;
Diagnosis
;
Encephalitis
;
Fever
;
Humans
;
Immunosuppressive Agents
;
Magnetic Resonance Imaging
;
Necrosis
;
Neoplasm Metastasis
;
Rheumatic Fever
;
Spasm
;
Stupor
;
Thigh
;
Trophozoites
;
Upper Extremity

Result Analysis
Print
Save
E-mail