1.Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein.
Xiaoyan ZHAO ; Hai PANG ; Shenglan WANG ; Weihong ZHOU ; Keqian YANG ; Mark BARTLAM
Protein & Cell 2010;1(8):771-779
The important and diverse regulatory roles of Ca(2+) in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.
Amino Acid Sequence
;
Binding Sites
;
Calcium
;
physiology
;
Calcium-Binding Proteins
;
chemistry
;
Crystallography, X-Ray
;
EF Hand Motifs
;
Molecular Sequence Data
;
Protein Binding
;
Protein Structure, Tertiary
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Streptomyces coelicolor
;
Structural Homology, Protein
;
Surface Properties
2.Crystal structure of the C-terminal domain of the ɛ subunit of human translation initiation factor eIF2B.
Jia WEI ; Minze JIA ; Cheng ZHANG ; Mingzhu WANG ; Feng GAO ; Hang XU ; Weimin GONG
Protein & Cell 2010;1(6):595-603
Eukaryotic translation initiation factor eIF2B, the guanine nucleotide exchange factor (GEF) for eIF2, catalyzes conversion of eIF2·GDP to eIF2·GTP. The eIF2B is composed of five subunits, α, β, γ, δ and ɛ, within which the ɛ subunit is responsible for catalyzing the guanine exchange reaction. Here we present the crystal structure of the C-terminal domain of human eIF2Bɛ (eIF2Bɛ-CTD) at 2.0-Å resolution. The structure resembles a HEAT motif and three charge-rich areas on its surface can be identified. When compared to yeast eIF2Bɛ-CTD, one area involves highly conserved AA boxes while the other two are only partially conserved. In addition, the previously reported mutations in human eIF2Bɛ-CTD, which are related to the loss of the GEF activity and human VWM disease, have been discussed. Based on the structure, most of such mutations tend to destabilize the HEAT motif.
Amino Acid Motifs
;
Amino Acid Sequence
;
Catalytic Domain
;
Crystallography, X-Ray
;
Eukaryotic Initiation Factor-2B
;
biosynthesis
;
chemistry
;
Humans
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
Protein Subunits
;
biosynthesis
;
chemistry
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
Sequence Alignment
;
Structural Homology, Protein
;
Surface Properties

Result Analysis
Print
Save
E-mail