1.Atrial fibrillation: mechanism and clinical management.
Zhicheng HU ; Ligang DING ; Yan YAO
Chinese Medical Journal 2023;136(22):2668-2676
Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with a range of symptoms, including palpitations, cognitive impairment, systemic embolism, and increased mortality. It places a significant burden on healthcare systems worldwide. Despite decades of research, the precise mechanisms underlying AF remain elusive. Current understanding suggests that factors like stretch-induced fibrosis, epicardial adipose tissue (EAT), chronic inflammation, autonomic nervous system (ANS) imbalances, and genetic mutations all play significant roles in its development. In recent years, the advent of wearable devices has revolutionized AF diagnosis, enabling timely detection and monitoring. However, balancing early diagnosis with efficient resource utilization presents new challenges for healthcare providers. AF management primarily focuses on stroke prevention and symptom alleviation. Patients at high risk of thromboembolism require anticoagulation therapy, and emerging pipeline drugs, particularly factor XI inhibitors, hold promise for achieving effective anticoagulation with reduced bleeding risks. The scope of indications for catheter ablation in AF has expanded significantly. Pulsed field ablation, as a novel energy source, shows potential for improving success rates while ensuring safety. This review integrates existing knowledge and ongoing research on AF pathophysiology and clinical management, with emphasis on diagnostic devices, next-generation anticoagulants, drugs targeting underlying mechanisms, and interventional therapies. It offers a comprehensive mosaic of AF, providing insights into its complexities.
Humans
;
Atrial Fibrillation/drug therapy*
;
Stroke
;
Risk Factors
;
Anticoagulants/therapeutic use*
;
Blood Coagulation
;
Catheter Ablation
;
Treatment Outcome
2.Network Meta-analysis of Chinese medicine injections for activating blood and resolving stasis in adjuvant treatment of acute ischemic stroke.
Shi-Xiong PENG ; Cong WEI ; Jing-Ying LEI ; Teng ZHANG ; Yan-Bing DING
China Journal of Chinese Materia Medica 2023;48(15):4215-4230
Network Meta-analysis was employed to compare the efficacy of Chinese medicine injections for activating blood and resolving stasis combined with conventional western medicine in the treatment of acute ischemic stroke and the effects on platelet aggregation rate, fibrinogen(FIB), and hypersensitive C-reactive protein(hs-CRP), with a view to providing evidence-based medicine reference for clinical medication. CNKI, Wanfang, VIP, SinoMed, PubMed, Web of Science, Cochrane Library, and EMbase were searched for randomized controlled trial(RCT) on the treatment of acute ischemic stroke with Salvia Miltiorrhiza Ligustrazine Injection, Danhong Injection, Shuxuetong Injection, Xueshuantong Injection, Shuxuening Injection, Safflower Yellow Pigment Injection, and Ginkgo Diterpene Lactone Meglumine Injection combined with conventional western medicine. The retrieval time was from database inception to March 18, 2023. The articles were extracted by two researchers and their quality was evaluated. R 4.2.2 was used for network Meta-analysis. A total of 87 RCTs involving 8 580 patients were included. Network Meta-analysis showed that, in terms of reducing National Institutes of Health stroke scale(NIHSS) scores, the surface under the cumulative ranking curve(SUCRA) showed the order of Xueshuantong Injection + conventional western medicine(88.7%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(73.7%) > Shuxuetong Injection + conventional western medicine(69.7%) > Shuxuening Injection + conventional western medicine(51.8%) > Danhong Injection + conventional western medicine(43.7%) > Safflower Yellow Pigment Injection + conventional western medicine(36.8%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(35.3%) > conventional western medicine(1.7%). In terms of improving clinical total effective rate, SUCRA showed the order of Danhong Injection + conventional western medicine(63.0%) > Shuxuening Injection + conventional western medicine(59.0%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(58.9%) > Safflower Yellow Pigment Injection + conventional western medicine(57.1%) > Xueshuantong Injection + conventional western medicine(56.8%) > Shuxuetong Injection + conventional western medicine(54.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(50.5%) > conventional western medicine(0.03%). In terms of improving Barthel index, SUCRA showed the order of Danhong Injection + conventional western medicine(84.7%) > Shuxuetong Injection + conventional western medicine(72.4%) > Safflower Yellow Pigment Injection + conventional western medicine(61.6%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(44.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(43.2%) > Shuxuening Injection + conventional western medicine(42.2%) > conventional western medicine(1.4%). In terms of reducing platelet aggregation rate, SUCRA showed the order of Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(82.4%) > Shuxuetong Injection + conventional western medicine(81.6%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(40.7%) > Danhong Injection + conventional western medicine(37.3%) > conventional western medicine(8.0%). In terms of reducing FIB, SUCRA showed the order of Danhong Injection + conventional western medicine(81.0%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(71.9%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(70.0%) > Shuxuetong Injection + conventional western medicine(46.7%) > Xueshuantong Injection + conventional western medicine(22.6%) > conventional western medicine(8.7%). In terms of reducing hs-CRP, SUCRA showed the order of Shuxuening Injection + conventional western medicine(89.9%) > Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine(78.8%) > Ginkgo Diterpene Lactone Meglumine Injection + conventional western medicine(52.4%) > Danhong Injection + conventional western medicine(47.6%) > Xueshuantong Injection + conventional western medicine(43.5%) > Shuxuetong Injection + conventional Western medicine(35.6%) > conventional western medicine(2.3%). The results indicated that Xueshuantong Injection + conventional western medicine, Danhong Injection + conventional western medicine, and Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine ranked the top three. Xueshuantong Injection + conventional western medicine had the best effect on reducing NIHSS scores. Danhong Injection + conventional western medicine showed the best performance of improving clinical total effective rate, improving Barthel index, and reducing FIB in the blood. Salvia Miltiorrhiza Ligustrazine Injection + conventional western medicine had the best effect on reducing platelet aggregation rate in the blood. Shuxuening Injection + conventional western medicine had the best effect on reducing hs-CRP. However, more high-quality RCTs are needed for verification in the future to provide more reliable evidence-based medical reference.
Humans
;
Medicine, Chinese Traditional
;
Ischemic Stroke/drug therapy*
;
Network Meta-Analysis
;
C-Reactive Protein
;
Drugs, Chinese Herbal/therapeutic use*
;
Adjuvants, Pharmaceutic
;
Diterpenes
;
Lactones
;
Meglumine
3.Active components and potential mechanism of Taohong Siwu Decoction in regulating ischemic stroke based on target cell trapping combined with network pharmacology, molecular docking, and experimental validation.
Lin-Feng TANG ; Hao CHANG ; Dan-Dan WANG ; Zhu-Qing LIU ; Lan HAN ; Dai-Yin PENG
China Journal of Chinese Materia Medica 2023;48(17):4761-4773
The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.
Animals
;
Rats
;
Ischemic Stroke/drug therapy*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Endothelial Cells
;
Phosphatidylinositol 3-Kinases
;
Drugs, Chinese Herbal/pharmacology*
4.Research progress in pathogenesis and traditional Chinese medicines treatment of ischemic stroke-related headache.
Yu-Meng PENG ; Jun-Qi WANG ; Ying-Lu BAI ; Yan WANG ; Rao FU ; Yi-Yu LIU ; Zhi-Yong LI ; Xiu-Lan HUANG
China Journal of Chinese Materia Medica 2023;48(16):4261-4274
Headache is a common clinical complication of ischemic stroke. As a precursor of stroke, headache occurs repeatedly in the convalescent period of ischemic stroke, leading to secondary stroke and seriously hindering patients' rehabilitation. Currently, it is believed that the pathogenesis of ischemic stroke-related headache is associated with the abnormal release of vasoactive substances, high platelet aggregation, and stimulation of intracranial pain-sensitive structures. The active ingredients in traditional Chinese medicines(TCM) with the effects of activating blood to resolve stasis and clearing heat to release exterior can protect brain tissue and relieve headache by reducing the release of inflammatory cytokines, alleviating antioxidant stress, inhibiting neuronal apoptosis and so on. This paper introduces the research progress in the potential mechanism and TCM treatment of ischemic stroke-related headache, aiming to provide reference for further research and drug development of this complication.
Humans
;
Ischemic Stroke/drug therapy*
;
Brain Ischemia/drug therapy*
;
Medicine, Chinese Traditional
;
Stroke/drug therapy*
;
Headache/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
5.Effect and mechanism of Zuogui Pills on neural function recovery in ischemic stroke mice based on OPN/IGF-1/mTOR.
Yan LIU ; Chun-Chen GAO ; Li LI ; Dan WU ; Yu-Jun CONG ; Qing-Hua FENG ; Ming-Hua WU ; Wen-Lei LI
China Journal of Chinese Materia Medica 2023;48(19):5250-5258
To explore the effect and mechanism of Zuogui Pills in promoting neural tissue recovery and functional recovery in mice with ischemic stroke. Male C57BL/6J mice were randomly divided into a sham group, a model group, and low-, medium, and high-dose Zuogui Pills groups(3.5, 7, and 14 g·kg~(-1)), with 15 mice in each group. The ischemic stroke model was established using photochemical embolization. Stiker remove and irregular ladder walking behavioral tests were conducted before modeling and on days 7, 14, 21, and 28 after medication. Triphenyl tetrazolium chloride(TTC) staining was performed on day 3 after modeling, and T2-weighted imaging(T2WI) and diffusion-weighted imaging(DWI) were performed on day 28 after medication to evaluate the extent of brain injury. Hematoxylin-eosin(HE) staining was performed to observe the histology of the cerebral cortex. Axonal marker proteins myelin basic protein(MBP), growth-associated protein 43(GAP43), mammalian target of rapamycin(mTOR), and its downstream phosphorylated s6 ribosomal protein(p-S6), as well as mechanism-related proteins osteopontin(OPN) and insulin-like growth factor 1(IGF-1), were detected using immunofluorescence and Western blot. Zuogui Pills had a certain restorative effect on the neural function impairment caused by ischemic stroke in mice. TTC staining showed white infarct foci in the sensory-motor cortex area, and T2WI imaging revealed cystic necrosis in the sensory-motor cortex area. The Zuogui Pills groups showed less brain tissue damage, fewer scars, and more capillaries. The number of neuronal axons in those groups was higher than that in the model group, and neuronal activity was stronger. The expression of GAP43, OPN, IGF-1, and mTOR proteins in the Zuogui Pills groups was higher than that in the model group. In summary, Zuogui Pills can promote the recovery of neural function and axonal growth in mice with ischemic stroke, and its mechanism may be related to the activation of the OPN/IGF-1/mTOR signaling pathway.
Mice
;
Animals
;
Male
;
Ischemic Stroke
;
Recovery of Function/physiology*
;
Insulin-Like Growth Factor I/pharmacology*
;
Mice, Inbred C57BL
;
TOR Serine-Threonine Kinases/metabolism*
;
Stroke/drug therapy*
;
Brain Ischemia/drug therapy*
;
Mammals/metabolism*
6.Efficacy and mechanism of Xuefu Zhuyu Decoction on model rats of coronary heart disease with heart blood stasis syndrome based on metabolomics.
Jing LI ; Zhi-Hua GUO ; Jian-He LIU ; Sen-Jie ZHONG ; Hui-Fang KUANG ; Yang YANG ; Yi LIU ; Qiu-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(20):5623-5631
This study investigated the effects of Xuefu Zhuyu Decoction on myocardial metabolites in a rat model of coronary heart disease with heart blood stasis syndrome and explored the therapeutic mechanism of blood circulation-promoting and blood stasis-removing therapy. SD rats were randomly divided into a sham operation group, a model group, a Xuefu Zhuyu Decoction group(14.04 g·kg~(-1)), and a trimetazidine group(5.4 mg·kg~(-1)). The sham operation group underwent thread insertion without ligation, while the other groups underwent coronary artery left anterior descending branch ligation to induce a model of coronary heart disease with heart blood stasis syndrome. Three days after modeling, drug intervention was performed, and samples were taken after 14 days of intervention. General conditions were observed, and electrocardiogram and cardiac ultrasound indices were measured. Hematoxylin-eosin(HE) staining and Masson staining were used to observe tissue pathological morphology. The enzyme linked immunosorbent assay(ELISA) was used to measure the levels of triglyceride(TG) and total cholesterol(TC) in the serum. Ultra high performance liquid chromatography-quantitative exactive-mass spectrometry(UHPLC-QE-MS) technology was used to screen differential metabolites in myocardial tissue and conduct metabolic pathway enrichment analysis. The results showed that Xuefu Zhuyu Decoction significantly improved the general condition of the model rats, reduced heart rate and ST segment elevation in the electrocardiogram, increased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), and decreased left ventricular internal diameter in diastole(LVIDd) and left ventricular internal diameter in systole(LVIDs). HE staining and Masson staining showed that Xuefu Zhuyu Decoction effectively alleviated myocardial tissue structural disorders, inflammatory cell infiltration, and collagen fiber deposition in the model rats. ELISA results showed that Xuefu Zhuyu Decoction effectively regulated serum TG and TC levels in the model rats. There were significant differences in the metabolic phenotypes of myocardial samples in each group. Fourteen differential metabolites were identified in the Xuefu Zhuyu Decoction group, involving five metabolic pathways, including arginine and proline metabolism, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, ether lipid metabolism, and alanine, aspartate, and glutamate metabolism. Xuefu Zhuyu Decoction improved cardiac function and myocardial structural damage in the rat model of coronary heart disease with heart blood stasis syndrome, and its biological mechanism involved the regulation of lipid metabolism, choline metabolism, amino acid metabolism, energy metabolism, and protein synthesis pathways.
Rats
;
Animals
;
Stroke Volume
;
Rats, Sprague-Dawley
;
Ventricular Function, Left
;
Coronary Disease/drug therapy*
;
Metabolomics
7.Expert consensus on clinical application of Lixuwang~® Xuesaitong Soft Capsules.
Min JIA ; Xiao LIANG ; Guo-Jing FU ; Xiang-Lan JIN ; Yan LU ; Xing LIAO ; Yun-Ling ZHANG
China Journal of Chinese Materia Medica 2023;48(20):5668-5674
Lixuwang~® Xuesaitong Soft Capsules(referred to as "Xuesaitong Soft Capsules") have the effects of promoting blood circulation, resolving blood stasis, and dredging meridians and collaterals. They are widely used in the prevention and treatment of cardiovascular and cerebrovascular diseases in clinical practice. Through years of clinical observation, they have shown significant efficacy in ischemic stroke, coronary heart disease, and other diseases, and have been recommended by multiple guidelines, consensus statements, and monographs. Based on the summary of clinical application experience by doctors and existing evidence-based research, following the Technical Specifications for Consensus Development of Chinese Patent Medicine by Clinical Experts issued by Standardization Office of the Chinese Association of Traditional Chinese Medicine, a nominal group method was used to reach 19 recommended opinions/consensus suggestions. This document proposes the timing of medication, syndrome differentiation for medication, therapeutic effects, dosage and administration, treatment duration, economic considerations, and safety considerations in the use of Xuesaitong Soft Capsules for the treatment of ischemic stroke and angina pectoris in coronary heart disease. It is intended for doctors in internal medicine, encephalopathy(neurology), cardiovascular medicine, geriatrics, emergency medicine, general practice, and traditional Chinese medicine departments of various medical institutions, as well as pharmacists in hospitals and pharmacies, as a medication reference when using Xuesaitong Soft Capsules. It is hoped that the widespread application of this consensus can improve the clinical efficacy of Xuesaitong Soft Capsules in the treatment of ischemic stroke and coronary heart disease, promote rational drug use, and reduce medication risks. This consensus has been reviewed and published by the China Association of Traditional Chinese Medicine, with the identification number GS/CACM 323-2023.
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Coronary Disease/drug therapy*
;
Ischemic Stroke/drug therapy*
;
Capsules
8.Effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction.
Xin-Yi FAN ; Xiao-Qi WEI ; Yun-Yang ZHANG ; Hai-Yin PU ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(21):5838-5850
Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.
Mice
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
beta Catenin/metabolism*
;
Matrix Metalloproteinase 3/therapeutic use*
;
Powders
;
Ventricular Remodeling
;
Stroke Volume
;
Ventricular Function, Left
;
Myocardial Infarction/drug therapy*
;
Myocardium/pathology*
;
Heart Failure/metabolism*
;
Collagen/metabolism*
;
Creatine Kinase
;
Fibrosis
9.Network Meta-analysis of efficacy and safety of different traditional Chinese medicine injections in treating post-acute myocardial infarction heart failure.
Yang SUN ; Li-Jie QIAO ; Jing-Jing WEI ; Bin LI ; Yuan GAO ; Ming-Jun ZHU
China Journal of Chinese Materia Medica 2023;48(21):5932-5945
This study aims to systematically review the efficacy and safety of different traditional Chinese medicine injections combined with conventional treatment for patients with post-acute myocardial infarction heart failure. The relevant randomized controlled trial(RCT) was retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, and Cochrane Library with the time interval from inception to May 13, 2023. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. Network Meta-analysis was then performed in RevMan 5.3 and Stata 15.1. A total of 68 RCTs involving 11 traditional Chinese medicine injections and 5 995 patients were included. The results were explained based on the surface under the cumulative ranking curve(SUCRA).(1) In terms of reducing major adverse cardiovascular event(MACE), the therapies followed the trend of Xinmailong Injection+conventional treatment(83.8%) > Yiqi Fumai Injection+conventional treatment(57.1%) > Xuebijing Injection+conventional treatment(56.6%) > Shenmai Injection+conventional treatment(53.1%) > Shenfu Injection+conventional treatment(45.3%) > conventional treatment(4.0%).(2) In terms of increasing left ventricular ejection fraction(LVEF), the therapies followed the trend of Yiqi Fumai Injection+conventional treatment(84.0%) > Shenmai Injection+conventional treatment(69.6%) > Shenfu Injection+conventional treatment(62.7%) > Xinmailong Injection+conventional treatment(61.6%) > Shuxuening Injection+conventional treatment(54.8%) > Shenqi Fuzheng Injection+conventional treatment(46.7%) > Shengmai Injection+conventional treatment(45.9%) > Breviscapine Injection+conventional treatment(39.9%) > Danhong Injection+conventional treatment(38.8%) > Huangqi Injection+conventional treatment(38.7%) > conventional treatment(7.3%).(3) In terms of reducing B-type natriuretic peptide(BNP), the therapies followed the trend of Xinmailong Injection+conventional treatment(98.6%) > Shenmai Injection+conventional treatment(57.7%) > Shenfu Injection+conventional treatment(52.5%) > Shengmai Injection+conventional treatment(30.1%) > conventional treatment(11.0%).(4) In terms of reducing cardiac troponin Ⅰ(cTnⅠ), the therapies followed the trend of Shenmai Injection+conventional treatment(92.3%) > Yiqi Fumai Injection+conventional treatment(61.5%) > Shenfu Injection+conventional treatment(51.2%) > Shengmai Injection+conventional treatment(48.1%) > Xinmailong Injection+conventional treatment(26.6%) > conventional treatment(20.3%).(5) In terms of reducing high-sensitivity C-reactive protein(hs-CRP), the therapies followed the trend of Shenmai Injection+conventional treatment(79.9%) > Xinmailong Injection+conventional treatment(68.1%) > Shenfu Injection+conventional treatment(63.1%) > Xuebijing Injection+conventional treatment(56.7%) > Shengmai Injection+conventional treatment(51.1%) > Shenqi Fuzheng Injection+conventional treatment(42.8%) > Huangqi Injection+conventional treatment(34.7%) > conventional treatment(3.5%).(6) A total of 22 RCTs reported the occurrence of adverse reactions, mainly involving the damage of the circulatory system, digestive system, and coagulation function. The current evidence suggested that Xinmailong Injection+conventional treatment may have the best therapeutic effect in reducing MACE and BNP; Yiqi Fumai Injection+conventional treatment may be the best in increasing LVEF; Shenmai Injection+conventional treatment may be the best in reducing cTnI and hs-CRP. The safety needs further quantitative research and analysis. However, more high-quality RCT is required to validate the above conclusions due to limitations in the quality and quantity of the included studies.
Humans
;
Medicine, Chinese Traditional
;
Stroke Volume
;
Network Meta-Analysis
;
C-Reactive Protein
;
Ventricular Function, Left
;
Drugs, Chinese Herbal/adverse effects*
;
Myocardial Infarction/drug therapy*
;
Heart Failure/drug therapy*
10.Shenfu Injection improves chronic heart failure by regulating pyroptosis based on NLRP3/caspase-1 pathway.
Xing-Yu FAN ; Xiao-Qian LIAO ; Shu-Min HUANG ; Zi-Yi WANG ; Lin LI ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2023;48(23):6475-6482
This study investigated the mechanisms and targets of Shenfu Injection in the intervention in chronic heart failure(CHF) through the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/caspase-1 signaling pathway. A CHF model was induced in rats by subcutaneous injection of isoproterenol. Model rats were randomly divided into a model group, a Shenfu Injection group, and a MCC950(NLRP3 inhibitor) group, and a blank group was also set up as a control. After 15 days of treatment, echocardiography was performed to measure cardiac function parameters [left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS)]. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of N-terminal pro-brain natriuretic peptide(NT-proBNP), interleukin(IL)-1β, and IL-18. Hematoxylin-eosin(HE) and Masson staining were used to observe morphological changes in myocardial tissues, and Western blot was used to measure the expression levels of NLRP3/caspase-1 pathway-related proteins [NLRP3, caspase-1, apoptosis-associated speck-like protein containing a CARD(ASC), gasdermin D(GSDMD), IL-1β, and IL-18]. The study found that isoproterenol-induced CHF in rats resulted in decreased cardiac function, worsened myocardial fibrosis, increased expression levels of NLRP3, ASC, caspase-1, GSDMD-N, IL-1β, and IL-18 in myocardial tissues, elevated serum inflammatory factors, and induced myocardial cell pyroptosis. Following Shenfu Injection intervention, the Shenfu Injection group showed significantly improved LVEF and LVFS, a significant decrease in NT-proBNP, a marked downregulation of NLRP3, ASC, caspase-1, GSDMD-N, IL-1β, and IL-18 protein expression levels, reduced serum inflammatory factors IL-1β and IL-18 expression in CHF rats, and a decrease in the rate of TUNEL-positive cells. Shenfu Injection can significantly improve cardiac function in CHF, inhibit myocardial fibrosis, and alleviate the progression of myocardial cell pyroptosis through the inhibition of the NLRP3/caspase-1 pathway.
Rats
;
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Interleukin-18/metabolism*
;
Caspase 1/metabolism*
;
Stroke Volume
;
Isoproterenol
;
Ventricular Function, Left
;
Heart Failure/drug therapy*
;
Fibrosis
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail