1.The Zuo Jin Wan Formula increases chemosensitivity of human primary gastric cancer cells by AKT mediated mitochondrial translocation of cofilin-1.
Meng-Yao SUN ; Dan-Dan WANG ; Jian SUN ; Xiao-Hua ZHAO ; Si CAI ; Qiu-Xue WU ; Tao JIE ; Zhen-Hua NI ; Jian-Yue SUN ; Qing-Feng TANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):198-208
		                        		
		                        			
		                        			Resistance to cisplatin (DDP)-based chemotherapy is a major cause of treatment failure in human gastric cancer (GC). It is necessary to identify the drugs to re-sensitize GC cells to DDP. In our previous research, Zuo Jin Wan Formula (ZJW) has been proved could increase the mitochondrial apoptosis via cofilin-1 in a immortalized cell line, SGC-7901/DDP. Due to the immortalized cells may still difficult highly recapitulate the important molecular events in vivo, primary GC cells model derived from clinical patient was constructed in the present study to further evaluate the effect of ZJW and the underlying molecular mechanism. Immunofluorescent staining was used to indentify primary cultured human GC cells. Western blotting was carried out to detect the protein expression. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation. Flow cytometry analysis was performed to assess cell apoptosis. ZJW inhibited proliferation and induced apoptosis in primary DDP-resistant GC cells. Notably, the apoptosis in GC cells was mediated by inducing cofilin-1 mitochondrial translocation, down-regulating Bcl-2 and up-regulating Bax expression. Surprisingly, the level of p-AKT protein was higher in DDP-resistant GC cells than that of the DDP-sensitive GC cells, and the activation of AKT could attenuate ZJW-induced sensitivity to DDP. These data revealed that ZJW can increase the chemosensitivity in DDP-resistant primary GC cells by inducing mitochondrial apoptosis and AKT inactivation. The combining chemotherapy with ZJW may be an effective therapeutic strategy for GC chemoresistance patients.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cisplatin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cofilin 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Mitochondria
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stomach Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Tumor Cells, Cultured
		                        			
		                        		
		                        	
2.Protective roles of Vigna subterranea (Bambara nut) in rats with aspirin-induced gastric mucosal injury.
Morufu Eyitayo BALOGUN ; Elizabeth Enohnyaket BESONG ; Jacinta Nkechi OBIMMA ; Ogochukwu Sophia MBAMALU ; Fankou Serges Athanase DJOBISSIE
Journal of Integrative Medicine 2018;16(5):342-349
OBJECTIVEVigna subterranea is widely consumed as a traditional staple food in Nigeria and some West African countries. The ethanolic seed extract of V. subterranea (EEVS) was investigated for its gastroprotective effects on aspirin plus pylorus ligation-induced gastric ulcerated rats using an in vivo assay.
METHODSGastric mucosal ulceration was induced experimentally in Groups 2 to 5 using aspirin plus pylorus ligation. Rats in Group 1 were orally pretreated with 3% Tween 80 only as normal control. Groups 2 to 5 were pretreated with 3% Tween 80 (ulcer group), 20 mg/kg of omeprazole (positive group), and 200 and 400 mg/kg of EEVS (experimental groups), respectively, once daily for 21 days before ulcer induction. Parameters including those for gastric secretions, ulcerated areas and gastric wall histology were assessed. Levels of superoxide dismutase (SOD), glutathione peroxidase (GP), and malondialdehyde (MDA) in the gastric tissue homogenate were also determined.
RESULTSPretreatment with EEVS significantly (P < 0.05) reduced the ulcer index, gastric volume and total acidity in rats with aspirin plus pylorus ligation-induced ulcer. The pH and mucus of gastric content increased significantly (P < 0.05) while the levels of SOD and GP were observed to be elevated with a reduced amount of MDA. Significant severe gastric mucosal injury was exhibited in the ulcer group and EEVS or omeprazole offered significant (P < 0.05) protection against mucosal ulceration. Histologically, the gastric submucosal layer showed remarkable decrease in edema and leucocytes infiltration compared with ulcer group.
CONCLUSIONThe study suggests that EEVS offered a protective action against aspirin plus pylorus ligation-induced gastric ulcers in Wistar rats. The protective effect might be mediated via antisecretory, cytoprotective and antioxidative mechanisms.
Animals ; Anti-Ulcer Agents ; pharmacology ; therapeutic use ; Antioxidants ; pharmacology ; therapeutic use ; Aspirin ; Edema ; Gastric Mucosa ; drug effects ; metabolism ; pathology ; Gastrointestinal Agents ; pharmacology ; therapeutic use ; Glutathione Peroxidase ; metabolism ; Hydrogen-Ion Concentration ; Leukocytes ; Male ; Malondialdehyde ; metabolism ; Mucus ; metabolism ; Nuts ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Rats, Wistar ; Severity of Illness Index ; Stomach Ulcer ; chemically induced ; drug therapy ; metabolism ; prevention & control ; Superoxide Dismutase ; metabolism ; Vigna
3.Effect of polyunsaturated fatty acids ω-3 and ω-6 on angiogenesis formation in human gastric cancer.
Jiachi MA ; Yuntao MA ; Tiankang GUO ; Quan CHEN ; Yiping LI ; He SU ; Xiaochang CHEN ; Xiaodan ZHAO ; Qinjin GUO ; Jianbo QI
Chinese Journal of Gastrointestinal Surgery 2017;20(1):84-89
OBJECTIVETo investigate the effects of polyunsaturated fatty acids (PUFA) ω-3 and ω-6, and their middle metabolites PGE2 and PGE3 on angiogenesis formation of gastric cancer, and to explore associated mechanism.
METHODSThe effects of ω-3, ω-6, PGE2, PGE3 on the proliferation and migration of human umbilical vein endothelial cell (HUVEC) were measured by proliferation and migration assay respectively. The angiogenesis assay in vivo was used to measure the effects of ω-3, ω-6, PGE2 and PGE3 on neovascularization. In all the assays, groups without ω-3, ω-6, PGE2 and PGE3 were designed as the control.
RESULTSWith the increased concentration of ω-6 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs enhanced, and the number of migration cells also increased from 28.2±3.0 to 32.8±2.1, which was higher than control group (21.2±3.2) respectively (both P<0.05). With the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs was inhibited, and the number of migration cells decreased from 15.8±2.0 to 11.0±2.1, which was lower than control group (22.1±3.0) respectively (both P<0.05). In the angiogenesis assay, compared with control group (standard number: 43 721±4 654), the angiogenesis ability of HUVECs was significantly enhanced by ω-6 in concentration-dependent manner (1 μmol/L group: 63 238±4 795, 10 μmol/L group: 78 166±6 123, all P<0.01). Meanwhile, with the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the angiogenesis ability was significantly decreased from 30 129±3 102 to 20 012±1 541(all P<0.01). The proliferation and migration ability of HUVECs were significantly promoted by ω-6 metabolites PGE2 (P<0.05) in a concentration-dependent manner. In contrast, ω-3 metabolites PGE3 significantly inhibited the proliferation and migration ability of HUVECs in a concentration-dependent manner (all P<0.05). After rofecoxib (a COX-2 specific inhibitor) inhibited the expression of COX-2, the expression level of PGE2 was significantly decreased in a dose-dependent manner. In co-culture system, whose gastric cancer cells expressed positive COX-2, ω-6 could increase angiogenesis of gastric cancer cells(P<0.01), but ω-3 could inhibit such angiogenesis(P<0.01). In co-culture system, whose gastric cancer cells did not express COX-2, ω-3 could inhibit the angiogenesis of gastric cancer cells (P<0.05), but ω-6 had no effect on angiogenesis.
CONCLUSIONSThe PUFA ω-6 can enhance the angiogenesis via the promotion of proliferation and migration of HUVECs, and COX-2 and PGE2 may play an important role in this process, whereas, the ω-3 can inhibit the angiogenesis through its middle metabolites PGE3 to inhibit the proliferation and migration of HUVECs. Results of this experiment may provide a new approach to inhibit and prevent the spread of gastric cancer.
Alprostadil ; analogs & derivatives ; pharmacology ; Angiogenesis Inducing Agents ; metabolism ; pharmacology ; Angiogenesis Inhibitors ; pharmacology ; Cell Count ; methods ; Cell Line, Tumor ; drug effects ; physiology ; Cell Migration Assays ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Coculture Techniques ; Cyclooxygenase 2 ; pharmacology ; Dinoprostone ; metabolism ; pharmacology ; Fatty Acids, Omega-3 ; pharmacology ; Fatty Acids, Omega-6 ; metabolism ; pharmacology ; Fatty Acids, Unsaturated ; pharmacology ; Human Umbilical Vein Endothelial Cells ; drug effects ; physiology ; Humans ; Lactones ; pharmacology ; Neovascularization, Pathologic ; physiopathology ; Stomach Neoplasms ; physiopathology ; Sulfones ; pharmacology
4.Comparison of the efficacy and safety of capecitabine or tegafur, gimeracil and oteracil potassium capsules combined with oxaliplatin chemotherapy regimens in the treatment of advanced gastric cancer.
Yiyuan WAN ; Hongxia HUI ; Xiaowei WANG ; Jian WU ; Su'an SUN
Chinese Journal of Oncology 2016;38(1):28-34
OBJECTIVETo observe the efficacy and safety of chemotherapy regimens oxaliplatin combined with capecitabine (CAPOX) or oxaliplatin combined with tegafur, gimeracil and oteracil potassium capsules (S-1)(SOX), and to investigate the value of expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) proteins in tumor tissue for predicting the efficacy of CAPOX and SOX regimens in advanced gastric cancer patients.
METHODSA total of 107 newly-diagnosed, stage Ⅲc/Ⅳ gastric cancer patients (no surgical indication, ECOG performance scores 0-2 and expected survival time ≥3 months) were recruited with 101 patients evaluated. The patients were randomly divided into two groups. One was study group in which the patients received CAPOX regimen. The other was control group received SOX regimen. Each patient received four cycles, at least two cycles chemotherapy every three weeks and followed up until death or lost. Tumor biopsies were obtained by gastroscopy for immunohistochemical examination of the expression of TP and DPD proteins before chemotherapy. Response rate (ORR), overall survival (OS) and time to tumor progression (TTP) of the patients were assessed.
RESULTSThe objective response rate (ORR) of the study and control groups was 49.0% (5/51) vs. 46.0% (23/50), respectively (P>0.05). The overall survival (OS) was 357.36±24.69 days in the study group and 349.87±22.63 days in the control group, and the time-to-progression (TTP) was 216.75±19.32 days in the study group and 220.54±18.47 days in the control group (P>0.05 for both). Stratified analysis showed that the ORR of TP-positive patients in the study group was significantly higher than that in the control group (72.0 % vs. 41.7 %, P=0.032). There was no significant difference in ORR between the TP-negative patients in the study and control groups (26.9% vs. 50.0%, P=0.087), while the ORR of DPD-positive patients in the control group was significantly higher than that of the study group (51.9% vs. 34.6%, P=0.046). There was no significant difference in the ORR between DPD-negative patients in the study and control groups (64.0% vs. 39.1%, P=0.084). The follow-up showed that the OS (378.42±22.56 days) and TTP (271.77±24.92 days) in the TP-positive patients of the study group were significantly longer than those of the control group (OS: 326.57±19.84 days, and TTP: 229.13±22.68 days)( P<0.05). The OS was 371.25±23.97 days and TTP was 264.66±21.36 days in the DPD-positive patients of control group, significantly longer than those of the study group (OS: 334.73±21.47days, and TTP: 208.58±20.70 days) (P<0.05). But there was no significant difference in the OS and TTP between the TP- and DPD-negative patients in the two groups (P>0.05). In respect of adverse events, both the rates of hematological and non-hematological toxicities were low and similar between the two groups (P>0.05), and well-tolerated by the patients.
CONCLUSIONSBoth CAPOX and SOX regimens are effective chemotherapeutic protocols in treatment of patients with advanced gastric cancer. The expression levels of TP and DPD in tumor tissue can be used as a predictive factor for the efficacy of capecitabine or tegafur, gimeracil and oteracil potassium capsules combined with oxaliplatin regimens. CAPOX chemotherapy regimen is more suitable for the TP-positive gastric cancer patients, and SOX regimen is more suitable for the DPS-positive gastric cancer patients.
Antineoplastic Agents ; adverse effects ; therapeutic use ; Antineoplastic Combined Chemotherapy Protocols ; adverse effects ; therapeutic use ; Capecitabine ; administration & dosage ; adverse effects ; Capsules ; Dihydrouracil Dehydrogenase (NADP) ; metabolism ; Disease Progression ; Humans ; Neoplasm Proteins ; metabolism ; Organoplatinum Compounds ; administration & dosage ; adverse effects ; Oxonic Acid ; administration & dosage ; adverse effects ; Pyridines ; administration & dosage ; adverse effects ; Stomach Neoplasms ; drug therapy ; metabolism ; mortality ; pathology ; Tegafur ; administration & dosage ; adverse effects ; Thymidine Phosphorylase ; metabolism
5.Effects of Weipixiao (胃痞消) on Wnt pathway-associated proteins in gastric mucosal epithelial cells from rats with gastric precancerous lesions.
Jin-hao ZENG ; Hua-feng PAN ; You-zhang LIU ; Hai-bo XU ; Zi-ming ZHAO ; Hai-wen LI ; Jin-ling REN ; Long-hui CHEN ; Xia HU ; Yan YAN
Chinese journal of integrative medicine 2016;22(4):267-275
OBJECTIVETo study the effects of Weipixiao (胃痞消, WPX) on Wnt pathway-associated proteins in gastric mucosal epithelial cells from rats with gastric precancerous lesions (GPL).
METHODSSprague Dawley rats were randomly divided into control, model, vitacoenzyme (0.2 g·kg(-1)·day(-1)), WPX high-dose (H-WPX, 15 g·kg(-1)·day(-1)), WPX medium-dose (M-WPX, 7.5 g·kg(-1)·day(-1)) and WPX low-dose (L-WPX, 3.75 g·kg(-1)·day(-1)) groups. After successfully establishing the GPL model, the rats were consecutively administered WPX or vitacoenzyme by gastrogavage for 10 weeks. Differential expression of Leucine-rich repeat-containing G-proteincoupled receptor 5 (Lgr5), matrix metalloproteinase-7 (MMP-7), Wnt1, Wnt3a, and β-catenin in gastric mucosal epithelial cells in all groups were immunohistochemically detected, and the images were taken and analyzed semiquantitatively by image pro plus 6.0 software.
RESULTSGastric epithelium in the model group showed significantly higher expression levels of Lgr5, MMP-7, Wnt1, Wnt3a and β-catenin than those of the control group(P<0.01). Interestingly, we also observed Lgr5+ cells, which generally located at the base of the gastric glandular unit, migrated to the luminal side of gastric epithelium with GPL. The expression levels of Lgr5, MMP-7, Wnt1, and β-catenin were all down-regulated in the L-WPX group as compared with those of both model and vitacoenzyme groups (P<0.05). A similar, but nonsignificant down-regulation in expression level of Wnt3a was noted in all WPX groups (P>0.05).
CONCLUSIONOur findings suggested that the therapeutic mechanisms of WPX in treating GPL might be related with its inhibitory effects on the expressions of Lgr5, MMP-7, Wnt1, β-catenin and the aberrant activation of Wnt/β-catenin pathway.
Animals ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Epithelial Cells ; drug effects ; metabolism ; pathology ; Gastric Mucosa ; pathology ; Immunohistochemistry ; Male ; Matrix Metalloproteinase 7 ; metabolism ; Precancerous Conditions ; drug therapy ; pathology ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; metabolism ; Staining and Labeling ; Stomach Neoplasms ; drug therapy ; pathology ; Wnt Proteins ; metabolism ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism
6.Total saponins from dioscorea septemloba thunb reduce serum uric acid levels in rats with hyperuricemia through OATP1A1 up-regulation.
Yan CHEN ; Xiao-lin CHEN ; Ting XIANG ; Bao-guo SUN ; Hao-xuan LUO ; Meng-ting LIU ; Ze-xiong CHEN ; Shi-jun ZHANG ; Chang-Jun WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(2):237-242
		                        		
		                        			
		                        			The aim of this study is to evaluate the efficacy of total saponins of Dioscorea (TSD), an extract of the Chinese herbal Bi Xie, on hyperuricemia and to elucidate the underlying mechanisms. The rat hyperuricemia model was established by administration of adenine. Thirty-two rats were randomly allocated into 4 groups: model group, low/high-dose TSD-treated groups, and allopurinol-treated group. Meanwhile, 8 rats were used as normal controls. Serum uric acid (UA), blood urea nitrogen (BUN), serum creatinine (Scr), and organic anion transporting polypeptide 1A1 (OATP1A1) levels were measured. Comparison between the model group and treatment (allopurinol and TSD) groups showed the serum UA levels were significantly decreased in treatment groups. TSD had similar effects to allopurinol. It was found that the OATP1A1 protein expression levels in treatment groups were higher than in model group and normal controls. And different from the allopurinol-treated groups, TSD-treated group had elevated OATP1A1 expression levels in the stomach, liver, small intestine and large intestine tissues. It was suggested that TSD may facilitate the excretion of UA and lower UA levels by up-regulating OATP1A1 expression.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Creatinine
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Dioscorea
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Hyperuricemia
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Intestines
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Organic Anion Transporters, Sodium-Independent
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Saponins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Stomach
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			Uric Acid
		                        			;
		                        		
		                        			blood
		                        			
		                        		
		                        	
7.alpha-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-Infected Gastric Epithelial AGS Cells.
Ji Hyun CHOI ; Soon Ok CHO ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(1):260-264
		                        		
		                        			
		                        			The epithelial cytokine response, associated with reactive oxygen species (ROS), is important in Helicobacter pylori (H. pylori)-induced inflammation. H. pylori induces the production of ROS, which may be involved in the activation of mitogen-activated protein kinases (MAPK), janus kinase/signal transducers and activators of transcription (Jak/Stat), and oxidant-sensitive transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), and thus, expression of interleukin-8 (IL-8) in gastric epithelial cells. alpha-lipoic acid, a naturally occurring thiol compound, is a potential antioxidant. It shows beneficial effects in treatment of oxidant-associated diseases including diabetes. The present study is purposed to investigate whether alpha-lipoic acid inhibits expression of inflammatory cytokine IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-infected gastric epithelial cells. Gastric epithelial AGS cells were pretreated with or without alpha-lipoic acid for 2 h and infected with H. pylori in a Korean isolate (HP99) at a ratio of 300:1. IL-8 mRNA expression was analyzed by RT-PCR analysis. IL-8 levels in the medium were determined by enzyme-linked immunosorbent assay. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assay. Phospho-specific and total forms of MAPK and Jak/Stat were assessed by Western blot analysis. ROS levels were determined using dichlorofluorescein fluorescence. As a result, H. pylori induced increases in ROS levels, mRNA, and protein levels of IL-8, as well as the activation of MAPK [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38], Jak/Stat (Jak1/2, Stat3), and NF-kappaB in AGS cells, which was inhibited by alpha-lipoic acid. In conclusion, alpha-lipoic acid may be beneficial for prevention and/or treatment of H. pylori infection-associated gastric inflammation.
		                        		
		                        		
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Epithelial Cells/metabolism
		                        			;
		                        		
		                        			Gastric Mucosa/*drug effects/metabolism/microbiology
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			Helicobacter Infections/immunology/*metabolism
		                        			;
		                        		
		                        			Helicobacter pylori/drug effects/*pathogenicity
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-8/genetics/*metabolism
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			Janus Kinase 1
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases/*biosynthesis
		                        			;
		                        		
		                        			NF-kappa B/*metabolism
		                        			;
		                        		
		                        			RNA, Messenger/isolation & purification/metabolism
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			;
		                        		
		                        			Stomach/metabolism/*microbiology
		                        			;
		                        		
		                        			Thioctic Acid/*pharmacology
		                        			
		                        		
		                        	
8.Isoprenaline Induces Periostin Expression in Gastric Cancer.
Guo Xiao LIU ; Hong Qing XI ; Xiao Yan SUN ; Zhi Jun GENG ; Shao Wei YANG ; Yan Jie LU ; Bo WEI ; Lin CHEN
Yonsei Medical Journal 2016;57(3):557-564
		                        		
		                        			
		                        			PURPOSE: Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS: Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION: These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma/*metabolism/pathology
		                        			;
		                        		
		                        			Adrenergic beta-Agonists/pharmacology
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Cell Adhesion Molecules/drug effects/*metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Fibroblasts/*metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic/*drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Isoproterenol/*pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Neoplasm Staging
		                        			;
		                        		
		                        			RNA, Messenger/genetics/metabolism
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Stomach/metabolism/pathology
		                        			;
		                        		
		                        			Stomach Neoplasms/*metabolism/pathology
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
9.Anti-proliferative and apoptotic effects of S1, a tetrandrine derivative, in human gastric cancer BGC-823 cells.
Rong-Rong LEI ; Hai-Feng HU ; Fan BAI ; Ying LIU ; Chun-Zhen WU ; Xiao-Xing HUANG ; Li-Ping XIE ; You-Jia HU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(7):527-533
		                        		
		                        			
		                        			The aim of the study was to investigate the anti-proliferation and apoptosis-inducing effects of S1, a novel tetrandrine derivative, in human gastric cancer BGC-823 cells and explore the possible mechanism of action. The anti-proliferative activity was determined by MTT assay; the induction of cell cycle arrest and apoptosis were detected by flow cytometry. Quantitative real time RT-PCR and Western blotting were used to evaluate the mRNA and protein expression levels in mitochondrial pathway. S1 significantly reduced cell viability and induced a G2/M phase arrest and apoptosis in dose- and time-dependent manner. Further studies showed that S1 increased mRNA and protein expression of Bax and the Bax/Bcl-2 ratio. Moreover, S1 decreased the protein expression of procaspase-9 and procaspase-3, suggesting that the induction of apoptosis may be related to the alteration of the ratio of Bax/Bcl-2 and the activation of caspases. These findings suggested that S1 merits further investigation as a novel therapeutic agent for the treatment of human gastric cancer.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Benzylisoquinolines
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Caspase 9
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Cycle Checkpoints
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stomach Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			bcl-2-Associated X Protein
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Expression of LXR-β in human gastric cancer tissue and the effect of GW3965 on the proliferation of gastric cancer cell line SGC-7901.
Ran WANG ; Ruixin LI ; Qiaocheng WEN ; Kun PENG ; Xiangzhou TAN ; Zhikang CHEN
Journal of Central South University(Medical Sciences) 2016;41(2):127-133
		                        		
		                        			OBJECTIVE:
		                        			To examine the expression of liver X receptor-β (LXR-β) in human gastric cancer tissue, and to explore the effect of GW3965, an agonist of LXRs, on proliferation of gastric cancer cell line SGC-7901.
		                        		
		                        			METHODS:
		                        			The immunohistochemical assay was used to detect the expression of LXR-β, activating transcription factor 4 (ATF4) in gastric cancer tissues and the corresponding pericarcinoma tissues in 114 patients. Real-time quantitative PCR and Western blot were used to determine mRNA and protein levels of ATF4 and ATP-binding cassette 1 (ABCA1), one of the downstream target genes of LXRs, in SGC-7901 cells with or without GW3965 treatment. Cell counting kit-8 (CCK-8) assay was performed to detect cell proliferation. The expression of ATF4 was silenced by short hairpin RNA (shRNA).
		                        		
		                        			RESULTS:
		                        			The expressions of LXR-β and ATF-4 were obviously down-regulated in the gastric cancer tissues than that in the corresponding pericarcinoma tissues (both P<0.05). Compared with the control cells, GW3965 treatment inhibited proliferation of SGC-7901 cells and up-regulated ATF4 and ABCA1 expressions (both P<0.05). Knockdown of ATF4 can reverse the antiproliferative effect of GW3965 on SGC-7901 cells.
		                        		
		                        			CONCLUSION
		                        			The expression of LXR-β is decreased in human gastric cancer tissues, and activation of LXRs by GW3965 could inhibit the proliferation of SGC-7901 cells via ATF4.
		                        		
		                        		
		                        		
		                        			Activating Transcription Factor 4
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Benzoates
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Benzylamines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Gene Silencing
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Liver X Receptors
		                        			;
		                        		
		                        			Orphan Nuclear Receptors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Stomach Neoplasms
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail