1.Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear.
Jieyu QI ; Wenjuan HUANG ; Yicheng LU ; Xuehan YANG ; Yinyi ZHOU ; Tian CHEN ; Xiaohan WANG ; Yafeng YU ; Jia-Qiang SUN ; Renjie CHAI
Neuroscience Bulletin 2024;40(1):113-126
		                        		
		                        			
		                        			Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
		                        		
		                        		
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hair Cells, Auditory, Inner/physiology*
		                        			;
		                        		
		                        			Ear, Inner/physiology*
		                        			;
		                        		
		                        			Hair Cells, Auditory/physiology*
		                        			;
		                        		
		                        			Regeneration/genetics*
		                        			;
		                        		
		                        			Stem Cells
		                        			
		                        		
		                        	
2.Isolation, culture and validation of CD34+ vascular wall-resident stem cells from mice.
Li-Ju YANG ; Ying MA ; Yuan LI ; Qing-Ya DANG ; Jun CHENG ; Yan YANG ; Peng-Yun LI
Acta Physiologica Sinica 2023;75(2):205-215
		                        		
		                        			
		                        			Vascular wall-resident stem cells (VW-SCs) play a critical role in maintaining normal vascular function and regulating vascular repair. Understanding the basic functional characteristics of the VW-SCs will facilitate the study of their regulation and potential therapeutic applications. The aim of this study was to establish a stable method for the isolation, culture, and validation of the CD34+ VW-SCs from mice, and to provide abundant and reliable cell sources for further study of the mechanisms involved in proliferation, migration and differentiation of the VW-SCs under various physiological and pathological conditions. The vascular wall cells of mouse aortic adventitia and mesenteric artery were obtained by the method of tissue block attachment and purified by magnetic microbead sorting and flow cytometry to obtain the CD34+ VW-SCs. Cell immunofluorescence staining was performed to detect the stem cell markers (CD34, Flk-1, c-kit, Sca-1), smooth muscle markers (SM22, SM MHC), endothelial marker (CD31), and intranuclear division proliferation-related protein (Ki-67). To verify the multipotency of the isolated CD34+ VW-SCs, endothelial differentiation medium EBM-2 and fibroblast differentiation medium FM-2 were used. After culture for 7 days and 3 days respectively, endothelial cell markers and fibroblast markers of the differentiated cells were evaluated by immunofluorescence staining and q-PCR. Furthermore, the intracellular Ca2+ release and extracellular Ca2+ entry signaling were evaluated by TILLvisION system in Fura-2/AM loaded cells. The results showed that: (1) High purity (more than 90%) CD34+ VW-SCs from aortic adventitia and mesenteric artery of mice were harvested by means of tissue block attachment method and magnetic microbead sorting; (2) CD34+ VW-SCs were able to differentiate into endothelial cells and fibroblasts in vitro; (3) Caffeine and ATP significantly activated intracellular Ca2+ release from endoplasmic reticulum of CD34+ VW-SCs. Store-operated Ca2+ entry (SOCE) was activated by using thapsigargin (TG) applied in Ca2+-free/Ca2+ reintroduction protocol. This study successfully established a stable and efficient method for isolation, culture and validation of the CD34+ VW-SCs from mice, which provides an ideal VW-SCs sources for the further study of cardiovascular diseases.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			Cell Differentiation/physiology*
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Adventitia
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Antigens, CD34/metabolism*
		                        			
		                        		
		                        	
3.Overview of the main biological mechanisms linked to changes in periodontal ligament stem cells and the inflammatory microenvironment.
Xuetao ZHAO ; Hongbing LIN ; Tong DING ; Yawei WANG ; Na LIU ; Yuqin SHEN
Journal of Zhejiang University. Science. B 2023;24(5):373-386
		                        		
		                        			
		                        			Periodontitis is a complex chronic inflammatory disease. The invasion of pathogens induces the inflammatory microenvironment in periodontitis. Cell behavior changes in response to changes in the microenvironment, which in turn alters the local inflammatory microenvironment of the periodontium through factors secreted by cells. It has been confirmed that periodontal ligament stem cells (PDLSCs) are vital in the development of periodontal disease. Moreover, PDLSCs are the most effective cell type to be used for periodontium regeneration. This review focuses on changes in PDLSCs, their basic biological behavior, osteogenic differentiation, and drug effects caused by the inflammatory microenvironment, to provide a better understanding of the influence of these factors on periodontal tissue homeostasis. In addition, we discuss the underlying mechanism in detail behind the reciprocal responses of PDLSCs that affect the microenvironment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Periodontal Ligament
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Periodontitis/metabolism*
		                        			;
		                        		
		                        			Cell Differentiation/physiology*
		                        			;
		                        		
		                        			Cells, Cultured
		                        			
		                        		
		                        	
4.A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity.
Mengmeng GE ; Amirhossein SHEIKHSHAHROKH ; Xiang SHI ; Yu-Hong ZHANG ; Zhiheng XU ; Qing-Feng WU
Neuroscience Bulletin 2023;39(4):645-658
		                        		
		                        			
		                        			To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neural Stem Cells/physiology*
		                        			;
		                        		
		                        			Neurons/physiology*
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Spinal Cord
		                        			;
		                        		
		                        			Embryonic Development
		                        			;
		                        		
		                        			Cell Differentiation/physiology*
		                        			
		                        		
		                        	
5.4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis.
Yifang HE ; Qianzhao JI ; Zeming WU ; Yusheng CAI ; Jian YIN ; Yiyuan ZHANG ; Sheng ZHANG ; Xiaoqian LIU ; Weiqi ZHANG ; Guang-Hui LIU ; Si WANG ; Moshi SONG ; Jing QU
Protein & Cell 2023;14(3):202-216
		                        		
		                        			
		                        			Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
		                        		
		                        		
		                        		
		                        			Mesenchymal Stem Cells/physiology*
		                        			;
		                        		
		                        			Cellular Senescence
		                        			;
		                        		
		                        			Homeostasis
		                        			;
		                        		
		                        			Cell Cycle Proteins/metabolism*
		                        			;
		                        		
		                        			Adaptor Proteins, Signal Transducing/metabolism*
		                        			;
		                        		
		                        			Mitochondria/metabolism*
		                        			;
		                        		
		                        			Electron Transport Complex III/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cells, Cultured
		                        			
		                        		
		                        	
6.Research progress in lineage tracing to explore hepatic parenchymal cell regeneration and repair mechanisms.
Chinese Journal of Hepatology 2023;31(7):781-784
		                        		
		                        			
		                        			Hepatic parenchymal cells are a type of liver cells that performs important functions such as metabolism and detoxification. The contribution of hepatic parenchymal cells, bile duct cells, and hepatic stem/progenitor cells to new hepatic parenchymal cells in the process of liver injury repair has become a controversial issue due to their strong proliferation ability. Lineage tracing technology, which has emerged in the past decade as a new method for exploring the origin of cells, can trace specific type of cells and their daughter cells by labeling cells that express the specific gene and their progeny. The article reviews the current literature on the origin and contribution of hepatic parenchymal cells by this technique. About 98% of new hepatic parenchymal cells originate from the existing hepatic parenchymal cells during liver homeostasis and after acute injury. However, under conditions of severe liver injury, such as inhibition of hepatic parenchymal cell proliferation, bile duct cells (mainly liver stem/progenitor cells) become the predominant source of hepatic parenchymal cells, contributing a steady increased hepatocyte regeneration with the extension of time.
		                        		
		                        		
		                        		
		                        			Hepatocytes/metabolism*
		                        			;
		                        		
		                        			Liver/metabolism*
		                        			;
		                        		
		                        			Bile Ducts
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Liver Regeneration/physiology*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			
		                        		
		                        	
7.The expression and function of PD-L1 in CD133(+) human liver cancer stem-like cells.
Yu Di BAI ; Mao Lin SHI ; Si Qi LI ; Xiao Li WANG ; Jing Jing PENG ; Dai Jun ZHOU ; Fei Fan SUN ; Hua LI ; Chao WANG ; Min DU ; Tao ZHANG ; Dong LI
Chinese Journal of Oncology 2023;45(2):117-128
		                        		
		                        			
		                        			Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			B7-H1 Antigen/metabolism*
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Liver Neoplasms/pathology*
		                        			;
		                        		
		                        			RNA, Small Interfering/metabolism*
		                        			;
		                        		
		                        			Neoplastic Stem Cells/physiology*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			
		                        		
		                        	
8.Effect of pulsed electromagnetic fields on mesenchymal stem cell-derived exosomes in inhibiting chondrocyte apoptosis.
Yang XU ; Qian WANG ; Xiangxiu WANG ; Xiaona XIANG ; Jialei PENG ; Jiangyin ZHANG ; Hongchen HE
Journal of Biomedical Engineering 2023;40(1):95-102
		                        		
		                        			
		                        			The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Chondrocytes
		                        			;
		                        		
		                        			Electromagnetic Fields
		                        			;
		                        		
		                        			Exosomes/physiology*
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/metabolism*
		                        			
		                        		
		                        	
9.Effect of PKM2 on Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Myeloma Bone Disease.
Jiang-Hua DING ; Shao-Lin YANG ; Shu-Lang ZHU
Journal of Experimental Hematology 2023;31(1):170-178
		                        		
		                        			OBJECTIVE:
		                        			To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.
		                        		
		                        			METHODS:
		                        			BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.
		                        		
		                        			RESULTS:
		                        			Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.
		                        		
		                        			CONCLUSION
		                        			The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			Bone Diseases/metabolism*
		                        			;
		                        		
		                        			Bone Marrow Cells
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/physiology*
		                        			;
		                        		
		                        			Multiple Myeloma/metabolism*
		                        			;
		                        		
		                        			Orlistat/pharmacology*
		                        			;
		                        		
		                        			Osteogenesis/genetics*
		                        			
		                        		
		                        	
10.Research advances of adipose stem cell matrix gel in promoting wound healing.
Nan XING ; Ran HUO ; Hai Tao WANG ; Jin Cun YANG ; Jiong CHEN ; Lei PENG ; Xiao Wen LIU
Chinese Journal of Burns 2023;39(1):81-84
		                        		
		                        			
		                        			In recent years, with the problem of aging population in China being prominant, the number of patients with chronic wounds such as diabetic foot, pressure ulcer, and vascular ulcer is increasing. Those diseases seriously affect the life quality of patients and increase the economy and care burden of the patients' family, which have been one of the most urgent clinical problems. Many researches have confirmed that adipose stem cells can effectively promote wound healing, while exogenous protease is needed, and there are ethical and many other problems, which limit the clinical application of adipose stem cells. Adipose stem cell matrix gel is a gel-like mixture of biologically active extracellular matrix and stromal vascular fragment obtained from adipose tissue by the principle of fluid whirlpool and flocculation precipitation. It contains rich adipose stem cells, hematopoietic stem cells, endothelial progenitor cells, and macrophages, etc. The preparation method of adipose stem cell matrix gel is simple and the preparation time is short, which is convenient for clinical application. Many studies at home and abroad showed that adipose stem cell matrix gel can effectively promote wound healing by regulating inflammatory reaction, promoting microvascular reconstruction and collagen synthesis. Therefore, this paper summarized the preparation of adipose stem cell matrix gel, the mechanism and problems of the matrix gel in promoting wound repair, in order to provide new methods and ideas for the treatment of chronic refractory wounds in clinic.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Wound Healing/physiology*
		                        			;
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			Adipose Tissue
		                        			;
		                        		
		                        			Extracellular Matrix
		                        			;
		                        		
		                        			Stem Cells
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail