1.Mechanism of miR-26a-5p/cAMP response element binding protein 1 molecular axis regulating osteogenic differentiation of adipose-derived mesenchymal stem cells.
Sanfu LIN ; Shoubo CHEN ; Kaibin FANG ; Jinnan SHI ; Wenhua WU ; Wenhuai WANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(5):615-621
OBJECTIVE:
To investigate the regulatory effects of miR-26a-5p on the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) by regulating cAMP response element binding protein 1 (CREB1).
METHODS:
The adipose tissues of four 3-4 weeks old female C57BL/6 mice were collected and the cells were isolated and cultured by digestion separation method. After morphological observation and identification by flow cytometry, the 3rd-generation cells were subjected to osteogenic differentiation induction. At 0, 3, 7, and 14 days after osteogenic differentiation induction, the calcium deposition was observed by alizarin red staining, ALP activity was detected, miR- 26a-5p and CREB1 mRNA expressions were examined by real-time fluorescence quantitative PCR, and CREB1 protein and its phosphorylation (phospho-CREB1, p-CREB1) level were measured by Western blot. After the binding sites between miR-26a-5p and CREB1 was predicted by the starBase database, HEK-293T cells were used to conduct a dual-luciferase reporter gene experiment to verify the targeting relationship (represented as luciferase activity after 48 hours of culture). Finally, miR-26a-p inhibitor (experimental group) and the corresponding negative control (control group) were transfected into ADSCs. Alizarin red staining, ALP activity, real-time fluorescent quantitative PCR (miR-26a-5p) and Western blot [CREB1, p-CREB1, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)] were performed at 7 and 14 days after osteogenic induction culture.
RESULTS:
The cultured cells were identified as ADSCs. With the prolongation of osteogenic induction culture, the number of calcified nodules and ALP activity significantly increased ( P<0.05). The relative expression of miR-26a-5p in the cells gradually decreased, while the relative expressions of CREB1 mRNA and protein, as well as the relative expression of p-CREB1 protein were increased. The differences were significant between 7, 14 days and 0 day ( P<0.05). There was no significant difference in p-CREB1/CREB1 between different time points ( P>0.05). The starBase database predicted that miR-26a-5p and CREB1 had targeted binding sequences, and the dual-luciferase reporter gene experiment revealed that overexpression of miR-26a-5p significantly suppressed CREB1 wild-type luciferase activity ( P<0.05). After 7 and 14 days of osteogenic induction, compared with the control group, the number of calcified nodules, ALP activity, and relative expressions of CREB1, p-CREB1, OCN, and RUNX2 proteins in the experimental group significantly increased ( P<0.05). There was no significant difference in p-CREB1/CREB1 between the two groups ( P>0.05).
CONCLUSION
Knocking down miR-26a-5p promoted the osteogenic differentiation of ADSCs by up-regulating CREB1 and its phosphorylation.
Animals
;
Female
;
Mice
;
Cell Differentiation
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Mesenchymal Stem Cells
;
Mice, Inbred C57BL
;
MicroRNAs/metabolism*
;
Osteocalcin/metabolism*
;
Osteogenesis/genetics*
;
RNA, Messenger/genetics*
2.7SK truncation at 128-179 nt suppresses embryonic stem cell proliferation
Rui CHEN ; Yurong ZHANG ; Peng CHEN ; Yixin PANG ; Hongbao LI ; Ziwei CHEN ; Xiaoyong ZHANG ; Hongyi ZHANG ; Wujun LI
Journal of Southern Medical University 2021;41(8):1125-1130
OBJECTIVE:
To explore the role of small nuclear noncoding RNA 7SK in embryonic stem cell (ESCs) proliferation and the value of 7SK as a target for early diagnosis and treatment for primordial dwarfism (PD).
METHODS:
ESC line R1 was transfected with the CRISPR/Cas9 system, and sequencing of the PCR product and glycerol gradient analysis were performed to identify novel 7SK deletion mutations. A lentivirus system was used to knock down cyclin-dependent kinase 9 (CDK9) in clones with 7SK deletion mutations, and the effect of CDK9 knockdown on the protein level of cell division cycle 6 (CDC6) was analyzed with Western blotting.
RESULTS:
We identified a novel deletion mutation of 7SK at 128-179 nt in the ESCs, which resulted in deficiency of cell proliferation. 7SK truncation at 128-179 nt significantly reduced the protein expressions of La-related protein 7 (LARP7) and CDC6.
CONCLUSIONS
7SK truncation at 128-179 nt can significantly impair proliferation of ESCs by downregulating CDC6. 7SK is a key regulator of proliferation and mediates the growth of ESCs through a mechanism dependent on CDK9 activity, suggesting the value of 7SK truncation at 128-179 nt as a potential target for early diagnosis and treatment of PD.
Cell Cycle Proteins
;
Cell Proliferation
;
Embryonic Stem Cells/metabolism*
;
HeLa Cells
;
Humans
;
Nuclear Proteins
;
Positive Transcriptional Elongation Factor B/metabolism*
;
RNA, Long Noncoding/genetics*
;
RNA-Binding Proteins
;
Ribonucleoproteins
;
Transcription Factors
3.Regeneration of functional alveoli by adult human SOX9 airway basal cell transplantation.
Qiwang MA ; Yu MA ; Xiaotian DAI ; Tao REN ; Yingjie FU ; Wenbin LIU ; Yufei HAN ; Yingchuan WU ; Yu CHENG ; Ting ZHANG ; Wei ZUO
Protein & Cell 2018;9(3):267-282
Irreversible destruction of bronchi and alveoli can lead to multiple incurable lung diseases. Identifying lung stem/progenitor cells with regenerative capacity and utilizing them to reconstruct functional tissue is one of the biggest hopes to reverse the damage and cure such diseases. Here we showed that a rare population of SOX9 basal cells (BCs) located at airway epithelium rugae can regenerate adult human lung. Human SOX9 BCs can be readily isolated by bronchoscopic brushing and indefinitely expanded in feeder-free condition. Expanded human SOX9 BCs can give rise to alveolar and bronchiolar epithelium after being transplanted into injured mouse lung, with air-blood exchange system reconstructed and recipient's lung function improved. Manipulation of lung microenvironment with Pirfenidone to suppress TGF-β signaling could further boost the transplantation efficiency. Moreover, we conducted the first autologous SOX9 BCs transplantation clinical trial in two bronchiectasis patients. Lung tissue repair and pulmonary function enhancement was observed in patients 3-12 months after cell transplantation. Altogether our current work indicated that functional adult human lung structure can be reconstituted by orthotopic transplantation of tissue-specific stem/progenitor cells, which could be translated into a mature regenerative therapeutic strategy in near future.
Bronchiectasis
;
genetics
;
metabolism
;
Humans
;
Pulmonary Alveoli
;
cytology
;
metabolism
;
SOX9 Transcription Factor
;
genetics
;
metabolism
;
Stem Cell Transplantation
;
methods
;
Stem Cells
;
cytology
;
metabolism
4.Regulation of DNA demethylation of STAT3 promoter in CD4+ T cells from aGVHD patients by HMGB1/GADD45A.
Yajing XU ; Jing YANG ; Yuanyuan ZHANG ; Enyi LIU ; Jie PENG ; Xu CHEN ; Fangping CHEN ; Minyuan PENG
Journal of Central South University(Medical Sciences) 2018;43(9):937-944
To study the molecular mechanism for DNA hypomethylation of STAT3 promoter in CD4+ T cells from acute graft-versus-host disease (aGVHD) patients.
Methods: We collected CD4+ T cells from peripheral blood of 42 patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) from HLA-identical sibling donors. GADD45A expression level in CD4+ T cells was measured by real-time PCR and Western blot. The binding level between HMGB1 and GADD45A in CD4+ T cells was analyzed by co-immunoprecipitation, while the binding levels of HMGB1/GADD45A with STAT3 promoter were detected by chromatin immunoprecipitation-quantitative real-time PCR (ChIP-qPCR). After overexpression of HMGB1 and knockdown of GADD45A in normal CD4+ T cells, STAT3 expression and DNA methylation were measured by Western blot and bisulfite sequencing PCR, respectively.
Results: GADD45A expression was significantly up-regulated in patients with aGVHD compared with that in the patients without aGVHD. More HMGB1-GADD45A complexes were found in CD4+ T cells from patients with aGVHD compared with that in patients without aGVHD. The bindings of HMGB1/GADD45A with STAT3 promoter were significantly increased, and the binding levels of HMGB1/GADD45A were negatively correlated with STAT3 promoter DNA methylation. The expression of STAT3 was significantly reduced and the DNA methylation of STAT3 promoter was significantly increased in CD4+ T cells with overexpression of HMGB1 and knockdown of GADD45A compared with CD4+ T cells only with overexpression of HMGB1.
Conclusion: The increased expression of HMGB1/GADD45A plays an importent role in STAT3 promoter DNA hypomethylation, thereby promoting STAT3 expression in CD4+ T cells from aGVHD patients.
CD4-Positive T-Lymphocytes
;
Cell Cycle Proteins
;
metabolism
;
DNA Demethylation
;
Gene Expression Regulation
;
genetics
;
Graft vs Host Disease
;
genetics
;
HMGB1 Protein
;
metabolism
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Nuclear Proteins
;
metabolism
;
Promoter Regions, Genetic
;
genetics
;
STAT3 Transcription Factor
;
genetics
;
metabolism
5.Effect of Miscanthus sinensis var. purpurascens Flower Extract on Proliferation and Molecular Regulation in Human Dermal Papilla Cells and Stressed C57BL/6 Mice.
Gi Hee JEONG ; William A BOISVERT ; Mei-Zhu XI ; Yi-Lin ZHANG ; Young-Bin CHOI ; Sunghun CHO ; Sanghyun LEE ; Changsun CHOI ; Bog-Hieu LEE
Chinese journal of integrative medicine 2018;24(8):591-599
OBJECTIVESTo investigate the hair growth-promoting effect of Miscanthus sinensis var. purpurascens (MSP) flower extracton on in vitro and in vivo models.
METHODSMSP flower extract was extracted in 99.9% methanol and applied to examine the proliferation of human dermal papilla cells (hDPCs) in vitro at the dose of 3.92-62.50 μg/mL and hair growth of C57BL/6 mice in vivo at the dose of 1000 μg/mL. The expression of transforming growth factor β1 (TGF-β1), hepatocyte growth factor (HGF), β-catenin, substance P was measured by relative quantitative realtime polymerase chain reaction. Histopathological and immunohistochemical analysis were performed.
RESULTSMSP (7.81 μg/mL) down-regulated TGF-β1 and up-regulated HGF and β-catenin in hDPCs (P<0.01). MSP (1000 μg/mL)-treated mice showed the earlier transition of hair follicles from the telogen to the anagen phase. The number of mast cells was lower in the MSP-treated mice than in other groups (P<0.05 vs. NCS group). Substance P and TGF-β1 were expressed in hair follicles and skin of the MSP group lower than that in negative control. Stem cell factor in hair follicles was up-regulated in the MSP-treated mice (P<0.01).
CONCLUSIONSThe MSP flower extract may have hair growth-promotion activities.
Animals ; Antioxidants ; pharmacology ; Cell Count ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Female ; Flowers ; chemistry ; Hair Follicle ; cytology ; drug effects ; growth & development ; Hepatocyte Growth Factor ; metabolism ; Humans ; Mast Cells ; cytology ; Mice, Inbred C57BL ; Phosphorylation ; drug effects ; Plant Extracts ; pharmacology ; Poaceae ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Skin ; metabolism ; Stem Cell Factor ; metabolism ; Stress, Psychological ; pathology ; Substance P ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; beta Catenin ; metabolism
6.Angiopoietin-1 Modified Human Umbilical Cord Mesenchymal Stem Cell Therapy for Endotoxin-Induced Acute Lung Injury in Rats.
Zhi Wei HUANG ; Ning LIU ; Dong LI ; Hai Yan ZHANG ; Ying WANG ; Yi LIU ; Le Ling ZHANG ; Xiu Li JU
Yonsei Medical Journal 2017;58(1):206-216
PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.
Acute Lung Injury/chemically induced/*therapy
;
Angiopoietin-1/*genetics
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Cytokines/metabolism
;
Endotoxins
;
Genetic Therapy
;
Interleukin-10/metabolism
;
Interleukin-6/metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung/metabolism
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/metabolism
;
Neutrophils/metabolism
;
Rats
;
Transforming Growth Factor beta1/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
;
Umbilical Cord/*cytology
7.Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.
Rui LI ; Le SUN ; Ai FANG ; Peng LI ; Qian WU ; Xiaoqun WANG
Protein & Cell 2017;8(11):823-833
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Action Potentials
;
physiology
;
Biomarkers
;
metabolism
;
Cell Culture Techniques
;
Embryoid Bodies
;
cytology
;
metabolism
;
Gene Expression
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Lateral Ventricles
;
cytology
;
growth & development
;
metabolism
;
Microcephaly
;
genetics
;
metabolism
;
pathology
;
Models, Biological
;
Mutation
;
Neocortex
;
cytology
;
growth & development
;
metabolism
;
Nerve Tissue Proteins
;
deficiency
;
genetics
;
Neurogenesis
;
genetics
;
Neurons
;
cytology
;
metabolism
;
Organoids
;
cytology
;
metabolism
;
PAX6 Transcription Factor
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
SOXB1 Transcription Factors
;
genetics
;
metabolism
;
Zonula Occludens-1 Protein
;
genetics
;
metabolism
8.The protective effect of bone marrow mesenchymal stem cells carrying antioxidant gene superoxide dismutase on paraquat lung injury in mice.
Hong LIU ; Yingwei DING ; Yuehui HOU ; Guangju ZHAO ; Yang LU ; Xiao CHEN ; Qiqi CAI ; Guangliang HONG ; Qiaomeng QIU ; Zhongqiu LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2016;34(1):1-7
OBJECTIVETo explore the possible mechanism and protective effect of BMSCs (bone mesenchymal stem cells) carrying superoxide dismutase (SOD) gene on mice with paraquat-induced acute lung injury.
METHODSTo establish the cell line of BMSCs bringing SOD gene, lentiviral vector bringing SOD gene was built and co-cultured with BMSCs. A total of 100 BALB/c mice were randomly divided into five groups, namely Control group, poisoning group (PQ group) , BMSCs therapy group (BMSC group) , BMSCs-Cherry therapy group (BMSC-Cherry group) , BMSCs-SOD therapy group (BMSC-SOD group) . PQ poisoning model was produced by stomach lavaged once with 1 ml of 25 mg/kg PQ solution, and the equal volume of normal saline (NS) was given to Control group mice instead of PQ. The corresponding BMSCs therapy cell lines were delivered to mice through the tail vein of mice 4h after PQ treatment.Five mice of each group were sacrificed 3 d, 7 d, 14 d and 21 days after corresponding BMSCs therapy cell lines administration, and lung tissues of mice were taken to make sections for histological analysis. The serum levels of glutathione (GSH) , malondialdehyde (MDA) , SOD, and the levels of transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) in lung tissue were determined. The level of SOD was assayed by Westen-blot.
RESULTSCompared with Control group, the early (3 days) levels of SOD protein in lung tissue of PQ group obviously decreased, and the late (21 days) levels of SOD obviously increased, while in therapy groups, that was higher than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Compared with Control group, the levels of plasma GSH and SOD of PQ group and each therapy group wae significantly lower than those in Control group, while in therapy groups, those were higher than those of PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) .Compared with Control group, the level of plasma MDA, TNF-α and TGF-β in PQ group and therapy groups were significantly higher, while in therapy groups, that was lower than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Lung biopsy showed that, the degree of lung tissue damage in each therapy group obviously reduced.
CONCLUSIONSOD is the key factor of the removal of reactive oxygen species (ROS) in cells, that can obviously inhibit the oxidative stress damage and the apoptosis induced by PQ, thus significantly increasing alveolar epithelial cell ability to fight outside harmful environment.
Acute Lung Injury ; chemically induced ; therapy ; Animals ; Antioxidants ; metabolism ; Cell Line ; Glutathione ; blood ; Lung ; pathology ; Malondialdehyde ; blood ; Mesenchymal Stem Cell Transplantation ; Mice ; Mice, Inbred BALB C ; Oxidative Stress ; Paraquat ; poisoning ; Superoxide Dismutase ; blood ; genetics ; Transforming Growth Factor beta ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
9.Thymosin β4 impeded murine stem cell proliferation with an intact cardiovascular differentiation.
Li NIE ; Shi-Jun GAO ; Ya-Nan ZHAO ; Jacob MASIKA ; Hong-Yan LUO ; Xin-Wu HU ; Liang-Pin ZHANG ; Ying ZENG ; Jürgen HESCHELER ; Hua-Min LIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):328-334
Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs. Target genes during mESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the mESCs-derived cardiomyocytes. It was found that Tβ4 decreased mESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, mESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these mESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant β-catenin. Under mESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of mESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed mESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
Animals
;
Cell Cycle
;
drug effects
;
genetics
;
Cell Differentiation
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
Extracellular Signal-Regulated MAP Kinases
;
genetics
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
JNK Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
genetics
;
metabolism
;
Octamer Transcription Factor-3
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
Primary Cell Culture
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-fos
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
Thymosin
;
pharmacology
10.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology

Result Analysis
Print
Save
E-mail