1.Clinical characteristics and treatment of spinal cord injury in children and adolescents.
Jin-Zuo WANG ; Ming YANG ; Meng MENG ; Zhong-Hai LI
Chinese Journal of Traumatology 2023;26(1):8-13
Pediatric and adult spinal cord injuries (SCI) are distinct entities. Children and adolescents with SCI must suffer from lifelong disabilities, which is a heavy burden on patients, their families and the society. There are differences in Chinese and foreign literature reports on the incidence, injury mechanism and prognosis of SCI in children and adolescents. In addition to traumatic injuries such as car accidents and falls, the proportion of sports injuries is increasing. The most common sports injury is the backbend during dance practice. Compared with adults, children and adolescents are considered to have a greater potential for neurological improvement. The pathogenesis and treatment of pediatric SCI remains unclear. The mainstream view is that the mechanism of nerve damage in pediatric SCI include flexion, hyperextension, longitudinal distraction and ischemia. We also discuss the advantages and disadvantages of drugs such as methylprednisolone in the treatment of pediatric SCI and the indications and timing of surgery. In addition, the complications of pediatric SCI are also worthy of attention. New imaging techniques such as diffusion tensor imaging and diffusion tensor tractography may be used for diagnosis and assessment of prognosis. This article reviews the epidemiology, pathogenesis, imaging, clinical characteristics, treatment and complications of SCI in children and adolescents. Although current treatment cannot completely restore neurological function, patient quality of life can be enhanced. Continued developments and advances in the research of SCI may eventually provide a cure for children and adolescents with this kind of injury.
Adult
;
Child
;
Humans
;
Adolescent
;
Diffusion Tensor Imaging/methods*
;
Quality of Life
;
Spinal Cord Injuries/therapy*
;
Prognosis
;
Athletic Injuries
;
Spinal Cord/pathology*
2.Recent progress and challenges in the treatment of spinal cord injury.
Ting TIAN ; Sensen ZHANG ; Maojun YANG
Protein & Cell 2023;14(9):635-652
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Humans
;
Axons/pathology*
;
Nerve Regeneration/physiology*
;
Spinal Cord Injuries/therapy*
;
Neurons/pathology*
;
Recovery of Function
3.Efficacy differences between electroacupuncture and moxibustion for neurogenic bladder after spinal cord injury: a randomized controlled trial.
Hui-Lin WEI ; Ya-Feng REN ; Zhi-Lan ZHANG ; Xiao-Meng HUANG ; Bing LI
Chinese Acupuncture & Moxibustion 2023;43(9):1036-1041
OBJECTIVE:
To compare the clinical efficacy between electroacupuncture(EA) and moxibustion for neurogenic bladder (NB) after spinal cord injury (SCI).
METHODS:
One hundred and twenty patients with NB after SCI were randomly divided into an EA group, a moxibustion group, and an intermittent catheterization group, with 40 patients in each group. The patients in the intermittent catheterization group were treated with routine treatment and intermittent catheterization, while the patients in the EA group and the moxibustion group were treated with additional treatments of EA (discontinuous wave, with a frequency of 1.3-1.6 Hz, and intensity based on patient tolerance) and moxibustion, respectively. The acupoints used in both groups were Zhongji (CV 3) and Guanyuan (CV 4), bilateral Zusanli (ST 36), Yinlingquan (SP 9), and Baliao points. Each session lasted for 30 min, once daily, six times a week, for a total of six weeks.The maximum bladder capacity (MBC), residual urine vdume (RUV), detrusor pressure (Pdet) during the filling phase, bladder compliance (BC), maximum renal pelvis separation width of both kidneys, urine white blood cell count, TCM syndrome score, and World Health Organization quality of life assessment-BREF (WHOQOL-BREF) score were compared before and after treatment in the 3 groups. The number of patients in each group who achieved bladder functional balance was recorded, and the clinical efficacy was assessed after treatment.
RESULTS:
After treatment, the MBC, Pdet, BC, and WHOQOL-BREF scores in the EA group and the moxibustion group were increased (P<0.05), while the RUV, maximum renal pelvis separation width of both kidneys, urine white blood cell count, and TCM syndrome scores were decreased (P<0.05, P<0.01). In the intermittent catheterization group, MBC, RUV, maximum renal pelvis separation width of both kidneys, and urine white blood cell count were decreased (P<0.05), while BC and WHOQOL-BREF score were increased (P<0.05) after treatment. After treatment, the MBC, Pdet, BC, and WHOQOL-BREF scores in the EA group and the moxibustion group were higher than those in the intermittent catheterization group (P<0.05), while the RUV and TCM syndrome scores were lower than those in the intermittent catheterization group (P<0.05). Moreover, after treatment, the MBC and Pdet in the moxibustion group were higher than those in the EA group (P<0.05), while the RUV, maximum renal pelvis separation width of both kidneys, and TCM syndrome score in the EA group were lower than those in the moxibustion group (P<0.05). The number of patients who achieved bladder functional balance after treatment in the EA group and the moxibustion group was higher than that in the intermittent catheterization group (P<0.05). The cured and effective rate was 85.0% (34/40) in the EA group and 82.5% (33/40) in the moxibustion group, which were both higher than 65.0% (26/40) in the intermittent catheterization group (P<0.05), there was no significant difference between the EA group and the moxibustion group (P>0.05).
CONCLUSION
EA and moxibustion could effectively improve the functional state of bladder in patients with NB after SCI. EA is more effective in reducing residual urine volume and excessive activity of the urethral sphincter, and relieving TCM syndromes, while moxibustion is more effective in increasing the pressure of the detrusor during the filling period and establishing the detrusor reflex.
Humans
;
Urinary Bladder, Neurogenic/therapy*
;
Electroacupuncture
;
Moxibustion
;
Quality of Life
;
Spinal Cord Injuries/therapy*
;
Syndrome
4.Timing umbilical therapy in treatment of neurogenic bladder after spinal cord injury based on midnight-noon and ebb-flow doctrine: a randomized controlled trial.
Dong-Li WANG ; Xue-Qian WANG ; Rui WANG ; You-Zhi HAO
Chinese Acupuncture & Moxibustion 2023;43(11):1246-1250
OBJECTIVES:
To observe the clinical efficacy of timing umbilical therapy for neurogenic bladder after spinal cord injury based on the midnight-noon and ebb-flow doctrine.
METHODS:
Sixty patients with neurogenic bladder after spinal cord injury were randomly divided into a trial group and a control group, with 30 patients in each group. In the trial group, based on the midnight-noon and ebb-flow doctrine, umbilical therapy was given at the time zone, 15:00 to 17:00. In the control group, umbilical therapy was delivered at any time zones except the period 15:00 to 17:00. The herbal plaster was remained on the umbilicus for 4 h each time, once daily. One course of treatment was composed of 2 weeks and the treatment lasted 4 weeks. Before and after treatment, the urodynamic indexes (maximum urinary flow rate [Qmax], maximum detrusor pressure [Pdet-max], residual urine volume [RUV]), voiding diary (average daily number of voiding, average daily number of leakage, average daily voided volume), neurogenic bladder symptom score (NBSS), the score of urinary symptom distress scale (USDS) and the score of World Health Organization quality of life assessment-BREF (WHOQOL-BREF) were compared between the two groups; and the clinical efficacy of the two groups was assessed.
RESULTS:
After treatment, Qmax, Pdet-max, the average daily voided volume and the scores of WHOQOL-BREF were increased (P<0.05); and RUV, the average daily number of voiding, the average daily number of leakage, NBSS and the scores of USDS were all reduced (P<0.05) in comparison with those before treatment in the two groups. When compared with those in the control group, Qmax, Pdet-max, the average daily voided volume and the score of WHOQOL-BREF were all higher (P<0.05); and RUV, the average daily number of voiding, the average daily number of leakage, NBSS and the score of USDS were lower (P<0.05) in the trial group. The total effective rate was 96.7% (29/30) in the trial group, higher than that (76.7%, 23/30) in the control group (P<0.05).
CONCLUSIONS
Timing umbilical therapy, based on the midnight-noon and ebb-flow doctrine, effectively relieves the symptoms of dysuria and improves the quality of life in patients with neurogenic bladder after spinal cord injury.
Humans
;
Urinary Bladder, Neurogenic/therapy*
;
Quality of Life
;
Umbilicus
;
Urinary Bladder
;
Spinal Cord Injuries/complications*
5.Neuroprotective effect and mechanism of cPLA2 inhibitor increases autophagic flux on spinal cord injury.
Wen-Hai YAN ; Ming-Sheng TAN ; Cheng HUANG ; Nan-Shan MA ; Xiang-Sheng TANG
China Journal of Orthopaedics and Traumatology 2023;36(9):873-879
OBJECTIVE:
To investigate the mechanism of cytosolic phospholipase A2(cPLA2) inhibitor to improve neurological function after spinal cord injury (SCI).
METHODS:
Thirty-six 3 months old female SD rats, with body mass (280±20) g, were divided into three groups (n=12):sham group, SCI group, and SCI+ arachidonyl trifluoromethyl ketone(AACOCF3) group. Balloon compression SCI model was established in all three groups. In the sham model group, the spinal cord compression model was created after the balloon was placed without pressure treatment, and the remaining two groups were pressurized with the balloon for 48 h. After successful modeling, rats in the SCI+AACOCF3 group were injected intraperitoneally with AACOCF3, a specific inhibitor of cPLA2. The remaining two groups of rats were injected intraperitoneally with saline. The animals were sacrificed in batches on 7 and 14 days after modeling, respectively. And the damaged spinal cord tissues were sampled for pathomorphological observation, to detect the expression of cPLA2 and various autophagic fluxPrelated molecules and test the recovery of motor function.
RESULTS:
Spinal cord histomorphometry examination showed that the spinal cord tissue in the sham group was structurally intact, with normal numbers and morphology of neurons and glial cells. In the SCI group, spinal cord tissue fractures with large and prominent spinal cord cavities were seen. In the SCI+AACOCF3 group, the spinal cord tissue was more intact than in the SCI group, with more fused spinal cord cavities, more surviving neurons, and less glial cell hyperplasia. Western blot showed that the sham group had the lowest protein expression of LC3-Ⅱ, Beclin 1, p62, and cPLA2 compared with the SCI and SCI+AACOCF3 groups (P<0.05) and the highest protein expression of LC3-Ⅰ (P<0.05). P62 and cPLA2 expression in the SCI group were higher than in the SCI+AACOCF3 group (P<0.05). Behavioral observations showed that the time corresponding to BBB exercise scores was significantly lower in both the SCI and SCI+AACOCF3 groups than in the sham group (P<0.05). Scores at 3, 7, and 14 days after pressurization were higher in the SCI+AACOCF3 group than in the SCI group (P<0.05).
CONCLUSION
cPLA2 inhibitors can reduce neuronal damage secondary to SCI, promote neurological recovery and improve motor function by improving lysosomal membrane permeability and regulating autophagic flux.
Female
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Neuroprotective Agents/pharmacology*
;
Spinal Cord Injuries/drug therapy*
;
Spinal Cord Compression
6.Short-chain fatty acids ameliorate spinal cord injury recovery by regulating the balance of regulatory T cells and effector IL-17+ γδ T cells.
Pan LIU ; Mingfu LIU ; Deshuang XI ; Yiguang BAI ; Ruixin MA ; Yaomin MO ; Gaofeng ZENG ; Shaohui ZONG
Journal of Zhejiang University. Science. B 2023;24(4):312-325
Spinal cord injury (SCI) causes motor, sensory, and autonomic dysfunctions. The gut microbiome has an important role in SCI, while short-chain fatty acids (SCFAs) are one of the main bioactive mediators of microbiota. In the present study, we explored the effects of oral administration of exogenous SCFAs on the recovery of locomotor function and tissue repair in SCI. Allen's method was utilized to establish an SCI model in Sprague-Dawley (SD) rats. The animals received water containing a mixture of 150 mmol/L SCFAs after SCI. After 21 d of treatment, the Basso, Beattie, and Bresnahan (BBB) score increased, the regularity index improved, and the base of support (BOS) value declined. Spinal cord tissue inflammatory infiltration was alleviated, the spinal cord necrosis cavity was reduced, and the numbers of motor neurons and Nissl bodies were elevated. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and immunohistochemistry assay revealed that the expression of interleukin (IL)-10 increased and that of IL-17 decreased in the spinal cord. SCFAs promoted gut homeostasis, induced intestinal T cells to shift toward an anti-inflammatory phenotype, and promoted regulatory T (Treg) cells to secrete IL-10, affecting Treg cells and IL-17+ γδ T cells in the spinal cord. Furthermore, we observed that Treg cells migrated from the gut to the spinal cord region after SCI. The above findings confirm that SCFAs can regulate Treg cells in the gut and affect the balance of Treg and IL-17+ γδ T cells in the spinal cord, which inhibits the inflammatory response and promotes the motor function in SCI rats. Our findings suggest that there is a relationship among gut, spinal cord, and immune cells, and the "gut-spinal cord-immune" axis may be one of the mechanisms regulating neural repair after SCI.
Animals
;
Rats
;
Interleukin-17
;
Rats, Sprague-Dawley
;
Recovery of Function
;
Spinal Cord Injuries/drug therapy*
;
T-Lymphocytes, Regulatory
;
Receptors, Antigen, T-Cell, gamma-delta/immunology*
7.Effect of moxibustion on M2 and P2X3 receptors of bladder tissue in rats with neurogenic bladder of detrusor areflexia after lumbar-sacral spinal cord injury.
Bing LI ; Yong-Fu WANG ; Ya-Feng REN ; Xiao-Dong FENG ; Jun-Min BAI ; Qiu-Yan NIU
Chinese Acupuncture & Moxibustion 2022;42(3):291-297
OBJECTIVE:
To observe the effect of moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) on acetylcholine (Ach), adenosine triphosphate (ATP) and muscarinic-type choline receptor (M2) and purine receptor P2X3 in bladder tissue in the rats with neurogenic bladder (NB) of detrusor areflexia after lumbar-sacral spinal cord injury and explore the underlying mechanism of moxibustion for promoting detrusor contraction.
METHODS:
Sixty SD rats were randomly divided into a model preparation group (n=45) and a sham-operation group (n=15). In the model preparation group, the modified Hassan Shaker spinal cord transection method was used to prepare the model of NB. In the sham-operation group, the spinal cord transection was not exerted except laminectomy and spinal cord exposure. Among the rats with successfully modeled, 30 rats were selected and divided randomly into a model group and a moxibustion group, with 15 rats in each one. On the 15th day after the operation, moxibustion was applied at "Guanyuan" (CV 4) and "Shenque" (CV 8) in the moxibustion group, 10 min at each acupoint, once a day. The consecutive 7-day treatment was as one course and the intervention for 2 courses was required. Urodynamic test was adopted to evaluate bladder function in rats. Using HE staining, the morphological changes in bladder tissue were observed. The content of Ach and ATP in bladder tissue was measured with biochemical method, and the protein and mRNA expression levels of M2 and P2X3 receptors in bladder tissue were detected with Western blot and real-time fluorescence quantification PCR method.
RESULTS:
Compared with the sham-operation group, the maximum bladder capacity, leakage point pressure and bladder compliance were increased in the rats of the model group (P<0.05). Compared with the model group, the maximum bladder capacity, the leakage point pressure and bladder compliance were decreased in the rats of the moxibustion group (P<0.05). In the model group, the detrusor fibres were arranged irregularly, bladder epithelial tissues were not tightly connected and cell arrangement was disordered, combined with a large number of vacuolar cells. In the moxibustion group, compared with the model group, the detrusor fibres were arranged regularly, bladder epithelial cells were well distributed and vacuolar cells were reduced. Compared with the sham-operation group, the content of Ach and ATP in bladder tissue was decreased (P<0.05), the protein and mRNA expression levels of M2 and P2X3 receptors were reduced (P<0.05) in the model group. In the moxibustion group, the content of Ach and ATP in bladder tissue was increased (P<0.05) and the protein and mRNA expression levels of M2 and P2X3 receptors were increased (P<0.05) as compared with the model group.
CONCLUSION
Moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) may effectively improve bladder function in the rats with NB of detrusor areflexia after lumbar-sacral spinal cord injury and its underlying mechanism is related to promoting the release of Ach and up-regulating the expression of M2 receptor, thereby enhancing the release of ATP and increasing the expression of P2X3 receptor. Eventually, detrusor contraction is improved.
Animals
;
Moxibustion/methods*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Purinergic P2X3/metabolism*
;
Spinal Cord Injuries/therapy*
;
Urinary Bladder
;
Urinary Bladder, Neurogenic/therapy*
8.Effect of moxibustion at "oppositely-located points" on neurogenic bladder after spinal cord injury and endoplasmic reticulum stress pathway in rats.
Wei WEI ; Zhi-Xin YANG ; Tian-Yu WANG ; Tao-Tao CUI ; Jian-Shuang CHEN ; Chao ZHANG ; Na LI ; Li-Qun REN
Chinese Acupuncture & Moxibustion 2022;42(4):413-418
OBJECTIVE:
To observe the effect of moxibustion at oppositely-located points "Mingmen" (GV 4) and "Shenque" (CV 8) on the motor function of the hind limbs and bladder function in rats with neurogenic bladder after suprasacral spinal cord injury (SCI), so as to explore the effect of this therapy on bladder tissue apoptosis mediated by endoplasmic reticulum stress pathway.
METHODS:
Twenty-eight female Wistar rats were randomly divided into a sham-operation group (8 rats) and a model establishment group (20 rats). Using the modified Allen's method, the spinal cord of T10 segment was injured to establish a neurogenic bladder model in the model establishment group. Sixteen rats were modeled successfully and then divided into a model group (8 rats) and a moxibustion group (8 rats). In the moxibustion group, 2 h after consciousness regaining from modeling anesthesia, moxibustion was exerted at "Shenque" (CV 8) and "Mingmen" (GV 4), 2 cones at each acupoint in one intervention. The intervention was administered once every two days and 5-time intervention was required totally. After intervention, Basso, Beattie and Bresnahan locomotor rating scale (BBB) score for the motor function of the hind limbs, and the urodynamics indexes (maximum bladder capacity, urine leakage pressure and bladder compliance) were compared among groups. HE staining method was adopted to observe the morphological changes of bladder tissue. With Western blot method and real-time PCR assay, the protein and mRNA expressions of the endoplasmic reticulum stress-related genes (glucose- regulated protein 78 [GRP78], activating transcription factor 4 [ATF4] and cysteinyl aspartate specific proteinase-12 [Caspase-12]) were determined.
RESULTS:
The transitional epithelial cells were arranged irregularly, the bladder wall was getting thinner, and the cellular vacuolar degeneration and neutrophil infiltration were found in the model group. Whereas, compared with the model group, in the moxibustion group, the arrangement of transitional epithelial cells was clear and continuous in layers, the cellular vacuolar degeneration was mild and the infiltration presented in a small amount of neutrophil granulocytes. Compared with the sham-operation group, in the model group, the BBB score was reduced (P<0.01), the maximum bladder capacity and bladder compliance were increased (P<0.01), and the protein expression levels of GRP78, ATF4 and Caspase-12, as well as mRNA expressions were all increased (P<0.01). In comparison with the model group, in the moxibustion group, BBB score was increased (P<0.01), the maximum bladder capacity and bladder compliance were decreased (P<0.01), and the protein and mRNA expression levels of GRP78, ATF4 and Caspase-12 were all decreased (P<0.01).
CONCLUSION
Moxibustion at the "oppositely-located points" improves the urination function, alleviate urine retention in neurogenic bladder rats after spinal cord injury. The underlying mechanism may be related to the down-regulation of the expressions of GRP78, ATF4 and Caspase-12 in the endoplasmic reticulum stress pathway of the bladder tissues, and thus to alleviate the apoptosis of bladder tissue.
Animals
;
Caspase 12/genetics*
;
Electroacupuncture
;
Endoplasmic Reticulum Stress
;
Female
;
Moxibustion
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Spinal Cord
;
Spinal Cord Injuries/therapy*
;
Urinary Bladder, Neurogenic/therapy*
9.Experimental study of electric field stimulation combined with polyethylene glycol in the treatment of spinal cord injury in rats.
Cheng ZHANG ; Aihua WANG ; Guanghao ZHANG ; Changzhe WU ; Wei RONG ; Xiaolin HUO
Journal of Biomedical Engineering 2022;39(1):10-18
Electric field stimulation (EFS) can effectively inhibit local Ca 2+ influx and secondary injury after spinal cord injury (SCI). However, after the EFS, the Ca 2+ in the injured spinal cord restarts and subsequent biochemical reactions are stimulated, which affect the long-term effect of EFS. Polyethylene glycol (PEG) is a hydrophilic polymer material that can promote cell membrane fusion and repair damaged cell membranes. This article aims to study the combined effects of EFS and PEG on the treatment of SCI. Sprague-Dawley (SD) rats were subjected to SCI and then divided into control group (no treatment, n = 10), EFS group (EFS for 30 min, n = 10), PEG group (covered with 50% PEG gelatin sponge for 5 min, n = 10) and combination group (combined treatment of EFS and PEG, n = 10). The measurement of motor evoked potential (MEP), the motor behavior score and spinal cord section fast blue staining were performed at different times after SCI. Eight weeks after the operation, the results showed that the latency difference of MEP, the amplitude difference of MEP and the ratio of cavity area of spinal cords in the combination group were significantly lower than those of the control group, EFS group and PEG group. The motor function score and the ratio of residual nerve tissue area in the spinal cords of the combination group were significantly higher than those in the control group, EFS group and PEG group. The results suggest that the combined treatment can reduce the pathological damage and promote the recovery of motor function in rats after SCI, and the therapeutic effects are significantly better than those of EFS and PEG alone.
Animals
;
Electric Stimulation
;
Polyethylene Glycols/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Recovery of Function/physiology*
;
Spinal Cord
;
Spinal Cord Injuries/therapy*
10.Effect and mechanism of thymosin beta 4 on spinal cord-derived neural stem /progenitor cell injury induced by oxidative stress.
China Journal of Orthopaedics and Traumatology 2022;35(8):763-771
OBJECTIVE:
To investigate the role and mechanism of thymosin beta 4 (Tβ4) in oxidative stress injury of spinal cord-derived neural stem/progenitor cells (NSPCs) induced by hydrogen peroxide (H2O2).
METHODS:
NSPCs were isolated from Sprague-Dawley (SD) adult male rats, and divided into control group (untreated NSPCs cells), H2O2 group (NSPCs cells damaged by 500 μM H2O2), Tβ4 -3 groups (NSPCs were treated with 1, 2.5, 5 μg/ml Tβ4 on the basis of H2O2 treatment) and TAK-242 group [NSPCs were treated with 5 μg/ml Tβ4 and Toll-like receptor 4(TLR4) inhibitor TAK-242 on the basis of H2O2 treatment]. NSPCs were transfected with lentivirus vector of myeloid differentiation factor 88(MyD88) to construct MyD88-overexpressing cell lines, which were treated with H2O2 and Tβ4. The expression of Tβ4, TLR4, MyD88 were detected by qRT-PCR and Western blot. Cell viability was detected by MTT assay and lactate dehydrogenase(LDH) assay kit. Ca2+ concentration was detected by Fluo-3/AM probe method. The apoptosis of NSPCs was detected by flow cytometry and Caspase-3 and Caspase-9 kits;reactive oxygen species (ROS), superoxi dedismu-tase dismutase(SOD) activity and glutathione (GSH) content were detected by corresponding kits. Interleukin(IL)-6 and IL-1β were detected by enzyme-linked immunosorbent assay.
RESULTS:
The expression of Tβ4 was decreased in H2O2 injured NSPCs(P<0.05). Compared with H2O2 group, the cell viability and Ca2+ concentration was significantly increased, release of LDH and apoptosis were significantly decreased, production of ROS and pro-inflammatory cytokines were significantly decreased, and the expression levels of TLR4 and MyD88 protein were significantly decreased in Tβ4-3 groups and TAK-242 group (P<0.05). After overexpression of MyD88, cell viability, SOD activity and GSH content of NSPCs decreased, LDH release and apoptosis increased significantly (P<0.05), while after treatment with Tβ4, cell viability, SOD activity and GSH content increased, LDH release and apoptosis decreased (P<0.05).
CONCLUSION
Tβ4 attenuates H2O2-induced NSPCs oxidative stress, apoptosis and inflammation in NSPCs via inhibiting TLR4 and MyD88 pathways.
Animals
;
Apoptosis
;
Calcium/pharmacology*
;
Cell Survival
;
Hydrogen Peroxide/pharmacology*
;
Male
;
Myeloid Differentiation Factor 88/pharmacology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/pharmacology*
;
Spinal Cord Injuries/drug therapy*
;
Stem Cells
;
Superoxide Dismutase/pharmacology*
;
Thymosin/metabolism*
;
Toll-Like Receptor 4/metabolism*

Result Analysis
Print
Save
E-mail