1.Expression profiles of brain-derived neurotrophic factor in the spinal dorsal horn of young rats with visceral hypersensitivity.
Bin WU ; Chun XU ; Huan-Huan HUANG
Chinese Journal of Contemporary Pediatrics 2016;18(3):277-281
OBJECTIVETo explore the relationship between the expression of brain-derived neurotrophic factor (BDNF) in the spinal dorsal horn and the increase in visceral hypersensitivity in young rats by establishing a young rat model of visceral hypersensitivity by neonatal maternal separation (NMS).
METHODSThirty-two newborn Sprague-Dawley rats were randomly and equally divided into four groups by a 2×2 factorial design: control, NMS, colorectal distension (CRD), and NMS+CRD. The newborn rats in the NMS and NMS+CRD groups were subjected to 3-hour daily maternal separation from days 2 to 14 after birth to establish a model of visceral hypersensitivity, while the rats in the control and CRD groups received no treatment after birth. At 6 weeks after birth, the CRD and CRD+NMS groups received CRD stimulation. The streptavidin-biotin complex immunohistochemical method was used to determine the expression of BDNF in the spinal dorsal horn. The immunohistochemical score (IHS) was calculated based on the percentage of BDNF-positive cells and color intensity. The percentage of BDNF-positive cells in the spinal dorsal horn and IHS were analyzed by factorial analysis of variance.
RESULTSThe expression of BDNF was detected bilaterally in the spinal dorsal horn at different levels in the four groups. The percentage of BDNF-positive cells and IHS were significantly higher in the NMS and NMS+CRD groups than in the control group (P<0.05). The results of factorial analysis of variance indicated that NMS significantly increased the percentage of BDNF-positive cells in the spinal dorsal horn and IHS; a single CRD stimulation had no effects on the IHS of BDNF-positive cells in the spinal dorsal horn; there was no interaction between NMS and a single CRD stimulation.
CONCLUSIONSThe over-expression of BDNF in the spinal dorsal horn may be involved in high visceral hypersensitivity in young rats induce by NMS.
Animals ; Brain-Derived Neurotrophic Factor ; analysis ; Female ; Hyperalgesia ; metabolism ; Immunohistochemistry ; Male ; Maternal Deprivation ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Dorsal Horn ; chemistry ; Visceral Pain ; metabolism
2.Comparison of arylalkylamine N-acetyltransferase and melatonin receptor type 1B immunoreactivity between young adult and aged canine spinal cord.
Ji Hyeon AHN ; Joon Ha PARK ; In Hye KIM ; Jae Chul LEE ; Bing Chun YAN ; Min Sik YONG ; Choong Hyun LEE ; Jung Hoon CHOI ; Ki Yeon YOO ; In Koo HWANG ; Seung Myung MOON ; Hyung Cheul SHIN ; Moo Ho WON
Journal of Veterinary Science 2014;15(3):335-342
Melatonin affects diverse physiological functions through its receptor and plays an important role in the central nervous system. In the present study, we compared immunoreactivity patterns of arylalkylamine N-acetyltransferase (AANAT), an enzyme essential for melatonin synthesis, and melatonin receptor type 1B (MT2) in the spinal cord of young adult (2~3 years) and aged (10~12 years) beagle dogs using immunohistochemistry and Western blotting. AANAT-specific immunoreactivity was observed in the nuclei of spinal neurons, and was significantly increased in aged dog spinal neurons compared to young adult spinal neurons. MT2-specific immunoreactivity was found in the cytoplasm of spinal neurons, and was predominantly increased in the margin of the neuron cytoplasm in aged spinal cord compared to that in the young adult dogs. These increased levels of AANAT and MT2 immunoreactivity in aged spinal cord might be a feature of normal aging and associated with a feedback mechanism that compensates for decreased production of melatonin during aging.
Age Factors
;
Aging/physiology
;
Animals
;
Arylalkylamine N-Acetyltransferase/*analysis/immunology/physiology
;
Blotting, Western
;
Dogs
;
Fluorescent Antibody Technique
;
Male
;
Receptor, Melatonin, MT2/*analysis/immunology/physiology
;
Spinal Cord/*chemistry/immunology/physiology
3.Effect of triptolide on iNOS and SP expressions in spinal dorsal horn and dorsal root ganglion of rats with adjuvant arthritis.
Wei CHEN ; Xu-Dong ZHANG ; Zhuo-Hui LU ; Deng-Ming WEI
China Journal of Chinese Materia Medica 2014;39(9):1675-1679
OBJECTIVETo observe the analgesic effect of triptolide (TP) of high, middle and low doses on rats with adjuvant arthritis (AA), and the expressions of inducible nitric oxide synthase (iNOS) and substance P (SP) in spinal dorsal horn and dorsal root ganglion (DRG) of corresponding sections, in order to discuss the possible mechanism for the analgesic effect of TP on rats with adjuvant arthritis.
METHODFifty SD rats were selected and randomly divided into the normal group (group A), the model group (group B), and TP low (group C), middle (group D), high (group E) dose groups. Except for the group A, all of the remaining groups were injected with 0.1 mL of Freund's complete adjuvant through their right rear toes to establish the model. At 14 d after the model establishment, rats in C, D and E groups were intraperitoneally injected with different doses of TP (0.1 mg x kg(-1) for the group C, 0.2 mg x kg(-1) for the group D, 0.4 mg x kg(-1) for the group E) once a day for 9 days. Then the 50% mechanical withdraw threshold (MWT) was determined. And the expressions of iNOS and SP in lumbar5 (L5) spinal dorsal horn and DRG were detected with the immunohistochemical method.
RESULTThe 50% MWT of rats in the group B was significantly lower than that of the group A (P < 0.01). After being treated with TP, the Thermal withdrawal latencies of groups C, D and E were significantly higher than that of the group B (P < 0.01). TP could notably increase the MWT of AA rats, with a certain dose-effect relationship. The immunohistochemical results indicated that the iNOS and SP expressions significantly increased in the group B (P < 0.01), while the positive expression levels of iNOS and SP in groups C, D and E were significantly lower than that of the group B (P < 0.01), with a certain dose-effect relationship.
CONCLUSIONTP shows a good analgesic effect on AA, and could inhibit the iNOS and SP expressions in spinal dorsal horn and DRG in rats with adjuvant arthritis, which may be one of action mechanisms for the analgesic effect of TP.
Animals ; Anti-Inflammatory Agents, Non-Steroidal ; pharmacology ; Arthritis, Experimental ; drug therapy ; metabolism ; physiopathology ; Diterpenes ; pharmacology ; Dose-Response Relationship, Drug ; Epoxy Compounds ; pharmacology ; Female ; Ganglia, Spinal ; drug effects ; metabolism ; Immunohistochemistry ; Male ; Nitric Oxide Synthase Type II ; biosynthesis ; Pain Measurement ; methods ; Phenanthrenes ; pharmacology ; Phytotherapy ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spinal Cord ; drug effects ; metabolism ; Substance P ; biosynthesis ; Time Factors ; Treatment Outcome ; Tripterygium ; chemistry
4.Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
Lei XIA ; Hong WAN ; Shu-yu HAO ; De-zhi LI ; Gang CHEN ; Chuan-chuan GAO ; Jun-hua LI ; Fei YANG ; Shen-guo WANG ; Song LIU
Chinese Medical Journal 2013;126(5):909-917
BACKGROUNDVarious tissue engineering strategies have been developed to facilitate axonal regeneration after spinal cord injury. This study aimed to investigate whether neural stem cells (NSCs) could survive in poly(L-lactic-co-glycolic acid) (PLGA) scaffolds and, when cografted with Schwann cells (SCs), could be induced to differentiate towards neurons which form synaptic connection and eventually facilitate axonal regeneration and myelination and motor function.
METHODSNSCs and SCs which were seeded within the directional PLGA scaffolds were implanted in hemisected adult rat spinal cord. Control rats were similarly injured and implanted of scaffolds with or without NSCs. Survival, migration, differentiation, synaptic formation of NSCs, axonal regeneration and myelination and motor function were analyzed. Student's t test was used to determine differences in surviving percentage of NSCs. One-way analysis of variance (ANOVA) was used to determine the differences in the number of axons myelinated in the scaffolds, the mean latency and amplitude of cortical motor evoked potentials (CMEPs) and Basso, Beattie & Bresnahan locomotor rating scale (BBB) score. The χ(2) test was used to determine the differences in recovery percentage of CMEPs.
RESULTSNSCs survived, but the majority migrated into adjacent host cord and died mostly. Survival rate of NSCs with SCs was higher than that of NSCs without SCs ((1.7831 ± 0.0402)% vs. (1.4911 ± 0.0313)%, P < 0.001). Cografted with SCs, NSCs were induced to differentiate towards neurons and might form synaptic connection. The mean number of myelinated axons in PLGA + NSCs + SCs group was more than that in PLGA + NSCs group and in PLGA group ((110.25 ± 30.46) vs. (18.25 ± 3.30) and (11.25 ± 5.54), P < 0.01). The percentage of CMEPs recovery in PLGA + NSCs + SCs group was higher than in the other groups (84.8% vs. 50.0% and 37.5%, P < 0.05). The amplitude of CMEPs in PLGA + NSCs + SCs group was higher than in the other groups ((1452.63 ± 331.70) µV vs. (428.84 ± 193.01) µV and (117.33 ± 14.40) µV, P < 0.05). Ipsilateral retransection resulted in disappearance again and functional loss of CMEPs for a few days. But contralateral retransection completely damaged the bilateral motor function.
CONCLUSIONSNSCs can survive in PLGA scaffolds, and SCs promote NSCs to survive and differentiate towards neurons in vivo which even might form synaptic connection. The scaffolds seeded with cells facilitate axonal regeneration and myelination and motor function recovery. But regenerating axons have limited contribution to motor function recovery.
Animals ; Axons ; physiology ; Cells, Cultured ; Electrophysiology ; Female ; Fluorescent Antibody Technique ; Lactic Acid ; chemistry ; Nerve Regeneration ; physiology ; Neural Stem Cells ; cytology ; Polyglycolic Acid ; chemistry ; Pregnancy ; Rats ; Rats, Wistar ; Schwann Cells ; cytology ; Spinal Cord Injuries ; therapy ; Tissue Engineering ; methods ; Tissue Scaffolds ; chemistry
5.Effects of complement inhibiting component of Ephedra sinica on immunological inflammation following acute spinal cord injury in rats.
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(10):1385-1389
OBJECTIVETo investigate the effects of complement inhibiting component of Ephedra sinica on immunological inflammation following acute spinal cord injury (SCI) in rats.
METHODSThe complement inhibiting component of Ephedra sinica was isolated by multiple precipitation steps and thin layer chromatography, and then the activity was analyzed. Fifty healthy SD rats were selected and randomly divided into the control group and the experimental group, 25 in each group. Induction of SCI was performed following a modified Allen's weight-drop method. The complement inhibiting component from Ephedra sinica (15 mg/kg) dissolving in 5 mL normal saline was immediately administered by gastrogavage after SCI, once daily. Equal volume of normal saline was administered to rats in the control group by gastrogavage. Hematoxylin and eosin (H&E) staining and C3 immunohistochemical staining were performed in SCI tissue at 12 h, day 1, 3, 7, and 14 after SCI. C3 positive expressions and myeloperoxidase (MPO) activity were assessed. Intercellular adhesion molecule-1 (ICAM-1) mRNA expression level was evaluated by Real-time PCR technique.
RESULTSC3 positive expression, MPO activity, and ICAM-1 mRNA level were significantly weaker in the Ephedra sinica group than in the control group at all time points (12 h, day 1, day 3, day 7, and day 14 after SCI) (P < 0.01, P < 0.05).
CONCLUSIONSThere existed complement system activation following acute SCI. The complement inhibiting component of Ephedra sinica significantly reduced immunological inflammation after SCI, and played an important role in secondary SCI.
Animals ; Complement Activation ; drug effects ; immunology ; Complement Inactivating Agents ; pharmacology ; Ephedra sinica ; chemistry ; Inflammation ; immunology ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries ; immunology ; metabolism ; pathology
6.Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats.
Jin-Rong WANG ; Yong-Zhi WANG ; Fu-Hui DONG ; Hong-Gang ZHONG ; De-Long WANG ; Xuan WANG
China Journal of Orthopaedics and Traumatology 2010;23(9):692-695
OBJECTIVETo study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife.
METHODSSustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software.
RESULTSSP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P < 0.01). The integrated optical density of SP like immunoreactivity of the DRG in the experiment group were significantly reduced compared with the control group (P < 0.05). However, the release of SP from spinal cord in experiment group was lower than that in the control group at the 1st day and the 3rd day (P < 0.01), with the opposite result of the 2nd day.
CONCLUSIONBased on the fact that SP is a nociceptive neurotransmitter, the present study suggests that tension relaxation by small needle knife reduces expression of SP in the DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).
Animals ; Female ; Ganglia, Spinal ; chemistry ; Immunohistochemistry ; Male ; Medicine, Chinese Traditional ; Needles ; Rats ; Rats, Sprague-Dawley ; Spinal Cord ; chemistry ; Substance P ; analysis ; secretion
7.Interaction of olfactory ensheathing cells with nerve repairing scaffolds.
Yonghong WANG ; Yonghong WANG ; Yixia YIN ; Shipu LI ; Qiongjiao YAN ; Zhitao WAN ; Yingchao HAN
Journal of Central South University(Medical Sciences) 2009;34(5):382-387
OBJECTIVE:
To investigate a new way to yield plenty of high purity olfactory ensheathing cells (OECs) and its biocompatibility with appropriate scaffolds.
METHODS:
OECs were prepared from neonatal Wister rats and co-cultured with poly [LA-co-(Glc-alt-Lys)] (PLGL). Its contact angle, adherent rate, and activity rate were tested.
RESULTS:
The contact angle of poly (D, L-lactic acid) (PDLLA) (84.5 degree+/-1.5 degree) was significantly higher than that of PLGL (52.6 degree+/-0.8 degree), the adherent rate of PLGL (80%) was significantly higher than that of the PDLLA (57%), and the activity rate of PLGL (88%) was much higher than that of the PDLLA (76%).
CONCLUSION
PLGL possesses better hydrophilicity and biocompatibility than PDLLA, and it can provide a better cell growth circumstance which is helpful for the effective treatment of nerve injury.
Animals
;
Animals, Newborn
;
Biocompatible Materials
;
Cells, Cultured
;
Lactic Acid
;
chemical synthesis
;
pharmacology
;
Nerve Regeneration
;
Olfactory Bulb
;
cytology
;
Polyglycolic Acid
;
chemical synthesis
;
pharmacology
;
Polylactic Acid-Polyglycolic Acid Copolymer
;
Rats
;
Rats, Wistar
;
Spinal Cord Injuries
;
physiopathology
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
;
chemistry
8.Protective effect of velvet antler polypeptide (VAP) on rats with the spinal cord injury.
Zhen-hua LI ; Xiang-yang LENG ; Zhong-li GAO
China Journal of Orthopaedics and Traumatology 2008;21(4):285-286
OBJECTIVETo investigate the protective effect of antler polypeptide on the rats with spinal cord injury (SCI).
METHODSThe model rats were treated with different doses of antler polypeptide, and its effect on motor function, ethology and pathological changes of spinal cord of the rats observed.
RESULTSSeven days after treatment with different doses of antler polypeptide, rat's motor activity was recovered in some extent. Significant difference (P < 0.001)was found between the antler polypeptide treatment group and operation group. The effect could be enhanced by increase of the doses. We observerd the effect on the pathological change of spinal cord in rat, and found the tissue edema and inflammatory infiltration were relieved after treatment with different doses of antler polypeptide, especially in the dose of 15 mg antler polypeptide.
CONCLUSIONAntler polypeptide can promote the motor function recovery in SCI rats, and its action is dose-dependent.
Animals ; Antlers ; chemistry ; Male ; Peptides ; therapeutic use ; Rats ; Rats, Wistar ; Spinal Cord ; pathology ; Spinal Cord Injuries ; drug therapy ; pathology
9.Research about schwann cells and PLGA implanted to rat transected spinal cord.
Hong WAN ; De-zhi LI ; Fei YANG ; Jun-hua LI ; Shen-guo WANG ; Zhong-cheng WANG
Chinese Journal of Surgery 2007;45(12):843-846
OBJECTIVETo investigate the recovery of rat transected spinal cord injury after implantation of Schwann cells combined with poly (lactide-co-glycolide) (PLGA).
METHODSSchwann cells were expanded, co-cultured with PLGA for 9 days in vitro, and then analyzed with scanning electron microscope (SEM). Rat spinal cord at the level of T(9) was transected. Schwann cells labeled with BrdU and PLGA scaffold were implanted to injury site. After 1, 3, 6 months, BrdU/MBP immunohistochemistry double staining, semi-thin sections stained thionin and ultra-thin section were performed to investigate myelin renew. BBB open field locomotion, motor evoked potential (MEP), compound muscle action potential (CMAP) and somatosensory evoked potential (SEP) were recorded.
RESULTSSchwann cells grew well on PLGA under SEM. BrdU/MBP double positive cells would been seen, remyelination was thin and formed by Schwann cells at 6 months later under electron microscope (EM). BBB behavioral tests revealed no significant difference in recovery comparing with experiment group and control group. The results of MEP, CMAP and SEP showed no significant improvement in the conduction of spinal cord.
CONCLUSIONSThere are the compatibility between Schwann cells and PLGA. Although remyelination was found in morphology, function conduction of spinal cord failed to be established.
Animals ; Cells, Cultured ; Disease Models, Animal ; Evoked Potentials, Motor ; Female ; Immunohistochemistry ; Lactic Acid ; chemistry ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nerve Regeneration ; Polyglycolic Acid ; chemistry ; Prostheses and Implants ; Rats ; Rats, Wistar ; Schwann Cells ; chemistry ; transplantation ; ultrastructure ; Spinal Cord Injuries ; physiopathology ; surgery ; Tissue Engineering ; methods
10.Transferrin receptor imaging for tracing mesenchymal stem cells implanted in the spinal cord.
Wei-min DING ; Jia-he TIAN ; Jin-zhu BAI ; Li SHEN
Journal of Southern Medical University 2007;27(9):1318-1322
OBJECTIVETo explore the feasibility of tracing mesenchymal stem cells in vivo with scintigraphy.
METHODSTransferrin receptor expression of cultured mesenchymal stem cells (hMSCs) was quantified with radioligand-receptor binding assay before the cells were transplanted into the spinal cord of rabbits. (131)I-labeled transferrin was then administered into the subarachnoid space of the rabbits, and scintigraphic images were acquired with a gamma camera at different time points after the administration. In the control experiments, (131)I-labeled human serum albumin was used in stead of (131)I-transferrin as the tracer, or only PBS was injected without stem cell transplantation. The images were semi-quantitatively analyzed with region of interest (ROI) techniques, and the phosphor imaging on the spinal sections were performed.
RESULTSRadioligand-receptor binding assay showed 10 770 binding sites with high affinity (KD=0.982 nmol/L) for Fe saturated transferrin on each human mesenchymal cell. Visible accumulation of radioactivity at the cell transplantation sites was observed 16 h and 24 h after intrathecal injection of (131)I-transferrin tracer, but not in two control groups. ROI analysis showed that the difference between (131)I-transferrin and the control groups was statistically significant (P<0.05). Phosphor imaging further verified that it was the specific coupling of transferrin to the implanted cells that resulted in radioactivity accumulation at the transplantation sites.
CONCLUSIONSTransferrin receptor imaging is capable of in vivo tracing of the implanted stem cells, and has the potential for use in non-invasive monitoring for stem cell transplantation therapy after further technical improvements.
Animals ; Autoradiography ; Cell Survival ; Feasibility Studies ; Female ; Gene Expression Regulation ; Humans ; Iodine Radioisotopes ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Molecular Imaging ; methods ; Rabbits ; Receptors, Transferrin ; metabolism ; Spinal Cord ; diagnostic imaging ; metabolism ; Tomography, Emission-Computed, Single-Photon ; Transferrin ; chemistry ; metabolism

Result Analysis
Print
Save
E-mail